4.6 Article

Ensemble Malware Classification System Using Deep Neural Networks

期刊

ELECTRONICS
卷 9, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/electronics9050721

关键词

cyber security; malware classification; convolutional neural networks; recurrent neural networks; support vector machine; logistic regression

向作者/读者索取更多资源

With the advancement of technology, there is a growing need of classifying malware programs that could potentially harm any computer system and/or smaller devices. In this research, an ensemble classification system comprising convolutional and recurrent neural networks is proposed to distinguish malware programs. Microsoft's Malware Classification Challenge (BIG 2015) dataset with nine distinct classes is utilized for this study. This dataset contains an assembly file and a compiled file for each malware program. Compiled files are visualized as images and are classified using Convolutional Neural Networks (CNNs). Assembly files consist of machine language opcodes that are distinguished among classes using Long Short-Term Memory (LSTM) networks after converting them into sequences. In addition, features are extracted from these architectures (CNNs and LSTM) and are classified using a support vector machine or logistic regression. An accuracy of 97.2% is achieved using LSTM network for distinguishing assembly files, 99.4% using CNN architecture for classifying compiled files and an overall accuracy of 99.8% using the proposed ensemble approach thereby setting a new benchmark. An independent and automated classification system for assembly and/or compiled files provides the luxury to anti-malware industry experts to choose the type of system depending on their available computational resources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据