4.8 Article

Designing complex architectured materials with generative adversarial networks

期刊

SCIENCE ADVANCES
卷 6, 期 17, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aaz4169

关键词

-

资金

  1. NSF [EFMA-1935291]
  2. U.S. Army Research Office through the Institute for Soldier Nanotechnologies at Massachusetts Institute of Technology [W911NF-13-D-0001]

向作者/读者索取更多资源

Architectured materials on length scales from nanometers to meters are desirable for diverse applications. Recent advances in additive manufacturing have made mass production of complex architectured materials technologically and economically feasible. Existing architecture design approaches such as bioinspiration, Edisonian, and optimization, however, generally rely on experienced designers' prior knowledge, limiting broad applications of architectured materials. Particularly challenging is designing architectured materials with extreme properties, such as the Hashin-Shtrikman upper bounds on isotropic elasticity in an experience-free manner without prior knowledge. Here, we present an experience-free and systematic approach for the design of complex architectured materials with generative adversarial networks. The networks are trained using simulation data from millions of randomly generated architectures categorized based on different crystallographic symmetries. We demonstrate modeling and experimental results of more than 400 two-dimensional architectures that approach the Hashin-Shtrikman upper bounds on isotropic elastic stiffness with porosities from 0.05 to 0.75.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据