4.7 Article

Quantum interference device for controlled two-qubit operations

期刊

NPJ QUANTUM INFORMATION
卷 6, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41534-020-0275-3

关键词

-

资金

  1. U.S. Army Research Office [W911NF-17-S-0008]
  2. Carlsberg Foundation
  3. Danish National Research Council under the Sapere Aude program
  4. Microsoft

向作者/读者索取更多资源

Universal quantum computing relies on high-fidelity entangling operations. Here, we demonstrate that four coupled qubits can operate as a quantum gate, where two qubits control the operation on two target qubits (a four-qubit gate). This configuration can implement four different controlled two-qubit gates: two different entangling swap and phase operations, a phase operation distinguishing states of different parity, and the identity operation (idle quantum gate), where the choice of gate is set by the state of the control qubits. The device exploits quantum interference to control the operation on the target qubits by coupling them to each other via the control qubits. By connecting several four-qubit devices in a two-dimensional lattice, one can achieve a highly connected quantum computer. We consider an implementation of the four-qubit gate with superconducting qubits, using capacitively coupled qubits arranged in a diamond-shaped architecture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据