4.7 Article

Synthesis, Characterization and Application of Iron(II) Doped Copper Ferrites (CuII(x)FeII(1-x)FeIII2O4) as Novel Heterogeneous Photo-Fenton Catalysts

期刊

NANOMATERIALS
卷 10, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/nano10050921

关键词

heterogeneous photo-Fenton type system; iron(II) doped copper ferrite; photocatalytic-degradation; methylene blue (MB)

资金

  1. Szechenyi 2020 [GINOP-2.3.2-15-2016-00016]
  2. Higher Educational Institutional Excellence Program 2019 the grant of the Hungarian Ministry for Innovation and Technology [NKFIH-1158-6/2019]

向作者/读者索取更多资源

The heterogeneous photo-Fenton type system has huge fame in the field of wastewater treatment due to its reusability and appreciable photoactivity within a wide pH range. This research investigates the synthesis and characterization of iron(II) doped copper ferrite ((Cu(x)Fe(1-x)Fe2O4)-Fe-II-Fe-II-O-III nanoparticles (NPs) and their photocatalytic applications for the degradation of methylene blue (MB) as a model dye. The NPs were prepared via simple co-precipitation technique and calcination. The NPs were characterized by using Raman spectroscopy, X-ray diffractometry (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS). SEM reveals the structural change from the spherical-like particles into needle-like fine particles as the consequence of the increasing ratio of copper(II) in the ferrites, accompanied by the decrease of the optical band-gap energies from 2.02 to 1.25 eV. The three major determinants of heterogeneous photo-Fenton system, namely NPs concentration, hydrogen peroxide concentration and pH, on the photocatalytic degradation of MB were studied. The reusability of NPs was found to be continuously increasing during 4 cycles. It was concluded that iron(II) doped copper ferrites, due to their favorable band-gap energies and peculiar structures, exhibit a strong potential for photocatalytic-degradation of dyes, for example, MB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据