4.2 Article

Landslide detection in mountainous forest areas using polarimetry and interferometric coherence

期刊

EARTH PLANETS AND SPACE
卷 72, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1186/s40623-020-01191-5

关键词

Synthetic aperture radar (SAR); ALOS-2; Disaster monitoring; 2018 Hokkaido Eastern Iburi Earthquake; July 2017 Heavy Rain in Northern Kyushu; Machine learning

资金

  1. Japan Aerospace Exploration Agency

向作者/读者索取更多资源

The cloud-free, wide-swath, day-and-night observation capability of synthetic aperture radar (SAR) has an important role in rapid landslide monitoring to reduce economic and human losses. Although interferometric SAR (InSAR) analysis is widely used to monitor landslides, it is difficult to use that for rapid landslide detection in mountainous forest areas because of significant decorrelation. We combined polarimetric SAR (PolSAR), InSAR, and digital elevation model (DEM) analysis to detect landslides induced by the July 2017 Heavy Rain in Northern Kyushu and by the 2018 Hokkaido Eastern Iburi Earthquake. This study uses fully polarimetric L-band SAR data from the ALOS-2 PALSAR-2 satellite. The simple thresholding of polarimetric parameters (alpha angle and Pauli components) was found to be effective. The study also found that supervised classification using PolSAR, InSAR, and DEM parameters provided high accuracy, although this method should be used carefully because its accuracy depends on the geological characteristics of the training data. Regarding polarimetric configurations, at least dual-polarimetry (e.g., HH and HV) is required for landslide detection, and quad-polarimetry is recommended. These results demonstrate the feasibility of rapid landslide detection using L-band SAR images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据