4.1 Article

Influence of the Geometric Parameters on the Densification Onset Strain of Double-Walled Honeycomb Aluminum under Out-of-Plane Compression

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2020/6012067

关键词

-

资金

  1. National Key R&D Program of China [2016YFB1200505]
  2. Liaoning Natural Science Foundation [20170540129]

向作者/读者索取更多资源

As a material widely used in various lightweight structures and energy absorbing devices, honeycomb aluminum has high specific stiffness and specific strength, excellent energy absorption capacity, and vibration damping. When evaluating the energy absorption of honeycomb aluminum under out-of-plane compression, platform stress and onset strain of densification have become important parameters studied by many scholars. In this work, based on the theory that the energy absorption efficiency determines the densification onset strain, the influence of the geometric design parameters of honeycomb aluminum on the onset strain of out-of-plane quasi-static compression densification is studied. Based on the results of the finite element analysis, the relationship between the onset strain and the geometric design parameters including cell size length and wall thickness is fitted by the least squares method. A linear relationship that the onset strain of densification will decrease with the increase of the reciprocal of cell side length and the onset strain of densification will decrease with the increase of the wall thickness is exhibited in the conclusion. This work can provide a theoretical basis for the calculation of the platform stress in the plastic deformation stage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据