4.6 Article

Inverse Coprecipitation Directed Porous Core-Shell Mn-Co-O Catalyst for Efficient Low Temperature Propane Oxidation

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 8, 期 14, 页码 5787-5798

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.0c01497

关键词

Propane oxidation; Co-Mn solid solution; Porous core-shell; Inverse coprecipitation; Superior H2O and CO2 resistance

资金

  1. National Natural Science Foundation of China [21875037, 21407025]
  2. National Key Research and Development Program of China [2016YFB0302300]
  3. New Century Talent Project of Fujian Province

向作者/读者索取更多资源

Mn-Co-O catalysts with different Mn/Co molar ratios were synthesized by means of a facile inverse coprecipitation strategy and applied for the oxidation of propane (C3H8). The XRD pattern of Co2Mn1O delta (molar ratio of Mn:Co = 1:2) indicates a Co3O4 phase, and most Mn incorporates into Co3O4 lattice to form a solid solution. Minor distributed Mn species occur structure reforming, totally converting to a stable Co-Mn solid solution during oxidation process. Meanwhile, Co2Mn1O delta features a porous core-shell morphology, the core and shell of which are made up of Co-Mn solid solution, giving rise to a high surface area. The optimized synergistic effect of manganese and cobalt improves low temperature reducibility and produces rich surface active Co3+ species and surface-absorbed oxygen over Co2Mn1O delta. As a result, it exhibits a prominent excellent catalytic activity, and delivers good thermal stability in the presence of 5 vol % H2O and 5 vol % CO2. In situ DRIFTs analysis displays the reaction path of C3H8 over Co2Mn1O delta, where dominate intermediate species formate are easily decomposed into CO2. The synthesized porous core-shell Mn-Co-O can be a promising candidate replacing non-noble catalysts toward C3H8 oxidation at low temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据