4.7 Article

Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1

期刊

PROTEIN & CELL
卷 11, 期 6, 页码 417-432

出版社

OXFORD UNIV PRESS
DOI: 10.1007/s13238-020-00720-y

关键词

light sensitivity; vivo-seq; patch-seq; calcium imaging in vivo; whole cell recording in vivo

资金

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB32010100]
  2. National Basic Research Program of China [2019YFA0110101, 2017YFA0103303, 2017YFA0102601]
  3. National Natural Science Foundation of China (NSFC) [31671072, 31771140, 81891001]
  4. Beijing Brain Initiative of Beijing Municipal Science & Technology Commission [Z181100001518004]
  5. Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning

向作者/读者索取更多资源

Vision formation is classically based on projections from retinal ganglion cells (RGC) to the lateral geniculate nucleus (LGN) and the primary visual cortex (V1). Neurons in the mouse V1 are tuned to light stimuli. Although the cellular information of the retina and the LGN has been widely studied, the transcriptome profiles of single light-stimulated neuron in V1 remain unknown. In our study, in vivo calcium imaging and whole-cell electrophysiological patch-clamp recording were utilized to identify 53 individual cells from layer 2/3 of V1 as light-sensitive (LS) or non-light-sensitive (NS) by single-cell light-evoked calcium evaluation and action potential spiking. The contents of each cell after functional tests were aspirated in vivo through a patch-clamp pipette for mRNA sequencing. Moreover, the three-dimensional (3-D) morphological characterizations of the neurons were reconstructed in a live mouse after the whole-cell recordings. Our sequencing results indicated that V1 neurons with a high expression of genes related to transmission regulation, such as Rtn4r and Rgs7, and genes involved in membrane transport, such as Na+/K+ ATPase and NMDA-type glutamatergic receptors, preferentially responded to light stimulation. Furthermore, an antagonist that blocks Rtn4r signals could inactivate the neuronal responses to light stimulation in live mice. In conclusion, our findings of the vivo-seq analysis indicate the key role of the strength of synaptic transmission possesses neurons in V1 of light sensory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据