4.7 Article

Premature failure of an additively manufactured material

期刊

NPG ASIA MATERIALS
卷 12, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41427-020-0212-0

关键词

-

资金

  1. Fundamental Research Funds for the Central Universities
  2. National Natural Science Foundation of China [51701075]
  3. Science and Technology Program of Guangzhou [201804010365]
  4. European Regional Development Fund [MOBERC15]

向作者/读者索取更多资源

Additively manufactured metallic materials exhibit excellent mechanical strength. However, they often fail prematurely owing to external defects (pores and unmelted particles) that act as sites for crack initiation. Cracks then propagate through grain boundaries and/or cellular boundaries that contain continuous brittle second phases. In this work, the premature failure mechanisms in selective laser melted (SLM) materials were studied. A submicron structure was introduced in a SLM Ag-Cu-Ge alloy that showed semicoherent precipitates distributed in a discontinuous but periodic fashion along the cellular boundaries. This structure led to a remarkable strength of 410 +/- 3 MPa with 16 +/- 0.5% uniform elongation, well surpassing the strength-ductility combination of their cast and annealed counterparts. The hierarchical SLM microstructure with a periodic arrangement of precipitates and a high density of internal defects led to a high strain hardening rate and strong strengthening, as evidenced by the fact that the precipitates were twinned and encircled by a high density of internal defects, such as dislocations, stacking faults and twins. However, the samples fractured before necking owing to the crack acceleration along the external defects. This work provides an approach for additively manufacturing materials with an ultrahigh strength combined with a high ductility provided that premature failure is alleviated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Manufacturing

Selective Laser Melting of Commercially Pure Molybdenum by Laser Rescanning

Navid Alinejadian, Pei Wang, Lauri Kollo, Konda Gokuldoss Prashanth

Summary: This study focuses on fabricating dense and near crack-free commercial pure molybdenum samples using selective laser melting (SLM). The use of a double scan strategy helps reduce the formation of solidification cracks.

3D PRINTING AND ADDITIVE MANUFACTURING (2023)

Article Engineering, Manufacturing

Selective Laser Melting of TiC-Fe via Laser Pulse Shaping: Microstructure and Mechanical Properties

Himanshu Singh Maurya, Lauri Kollo, Marek Tarraste, Kristjan Juhani, Fjodor Sergejev, Konda Gokuldoss Prashanth

Summary: In this study, TiC-Fe cermets were fabricated using pulse shaping technique and regular laser pulse wave for the first time in selective laser melting (SLM). The effect of laser peak power and pulse shaping on the microstructure development was investigated, and the results showed that pulse shaping can effectively avoid cracking in brittle materials processed by SLM.

3D PRINTING AND ADDITIVE MANUFACTURING (2023)

Article Materials Science, Multidisciplinary

Additive Manufacturing of CoCrFeMnNi High-Entropy Alloy/AISI 316L Stainless Steel Bimetallic Structures

Rathinavelu Sokkalingam, Zhao Chao, Katakam Sivaprasad, Veerappan Muthupandi, Jayamani Jayaraj, Parthiban Ramasamy, Juergen Eckert, Konda Gokuldoss Prashanth

Summary: CoCrFeMnNi high-entropy alloy/AISI 316L stainless steel bimetal was fabricated using SLM, showing enhanced hardness and tensile strength due to the composition and structure advantages. However, the presence of defects and higher susceptibility to pitting corrosion in CoCrFeMnNi-HEA make it more prone to corrosion attack in corrosive environments.

ADVANCED ENGINEERING MATERIALS (2023)

Article Materials Science, Multidisciplinary

Influence of Hatch Strategy on Crystallographic Texture Evolution, Mechanical Anisotropy of Laser Beam Powder Bed Fused S316L Steel

Sabine C. Bodner, Kostyantin Hlushko, Kevin Kutlesa, Juraj Todt, Oliver Renk, Michael Meindlhumer, Florian Resch, Marc-Andre Nielsen, Jozef Keckes, Jurgen Eckert

Summary: The correlations between process conditions, microstructure, and mechanical properties of additively manufactured components are explored in this study. The results show that the applied hatch strategy has a significant impact on the microstructure and mechanical properties of the samples, especially the anisotropy observed in the plane perpendicular to the build direction.

ADVANCED ENGINEERING MATERIALS (2023)

Article Metallurgy & Metallurgical Engineering

Selective Laser Melting of TiC-Based Cermet: HIP Studies

H. S. Maurya, L. Kollo, M. Tarraste, K. Juhani, F. Sergejev, K. G. Prashanth

Summary: The development of microstructure and mechanical properties of TiC-Fe based cermets fabricated through selective laser melting (SLM) and post-treatment processes were studied. Pulse shaping technique was used to distribute energy uniformly and control the laser material exposure. Laser beam optimization proved to be an effective method for crack-free cermets fabrication.

TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS (2023)

Article Materials Science, Multidisciplinary

High-Entropy Alloy-Induced Metallic Glass Transformation: Challenges Posed by in situ Alloying via Additive Manufacturing

Sepide Hadibeik, Florian Spieckermann, Martin Nosko, Farzad Khodabakhshi, Mahmoud Heydarzadeh Sohi, Juergen Eckert

Summary: A novel approach for fabricating bulk metallic glass using additive manufacturing has been studied, however, there are challenges, such as unmelted powder and compositional deviation, that need further investigation to optimize the process parameters.

ADVANCED ENGINEERING MATERIALS (2023)

Article Materials Science, Multidisciplinary

Enhanced mechanical performance of gradient-structured CoCrFeMnNi high-entropy alloys induced by industrial shot-blasting

Ming-Zhi Zhang, Kun Zhang, Kai-Kai Song, Xiao-Yu Zou, Wei-Dong Song, Ke-Feng Li, Li-Na Hu, Ze-Qun Zhang, Juergen Eckert

Summary: In this study, CoCrFeMnNi high-entropy alloys with a surface gradient nanostructure were produced using industrial shot blasting, which significantly improved their mechanical properties. The severely plastically deformed surface layer had a multi-scale hierarchical structure and increased in depth with shot-blasting time. The microhardness and tensile strength of the alloy were significantly higher after shot-blasting. The improved strain hardening and prevention of early necking in the gradient-nanostructured surface layer contributed to its high toughness.

RARE METALS (2023)

Article Chemistry, Physical

Can Severe Plastic Deformation Tune Nanocrystallization in Fe-Based Metallic Glasses?

Monika Antoni, Florian Spieckermann, Niklas Plutta, Christoph Gammer, Marlene Kapp, Parthiban Ramasamy, Christian Polak, Reinhard Pippan, Michael J. J. Zehetbauer, Juergen Eckert

Summary: The effects of severe plastic deformation (SPD) by means of high-pressure torsion (HPT) on Fe73.9Cu1Nb3Si15.5B6.6 and Fe81.2Co4Si0.5B9.5P4Cu0.8 iron-based metallic glasses were compared. HPT processing extended the consolidation and deformation ranges for Fe73.9Cu1Nb3Si15.5B6.6, and achieved consolidation and deformation with minimum cracks for Fe81.2Co4Si0.5B9.5P4Cu0.8 for the first time. Various analyses revealed that Fe81.2Co4Si0.5B9.5P4Cu0.8 exhibited HPT-induced crystallization phenomena, while Fe73.9Cu1Nb3Si15.5B6.6 did not crystallize even at high HPT-deformation degrees.

MATERIALS (2023)

Editorial Material Chemistry, Multidisciplinary

Special Issue Novel Structural and Functional Material Properties Enabled by Nanocomposite Design

Juergen Eckert, Daniel Kiener

NANOMATERIALS (2023)

Article Chemistry, Physical

Iron oxide - poly(m-anthranilic acid)-poly(e-caprolactone) electrospun composite nanofibers: fabrication and properties

Keziban Huner, Baran Sarac, Eray Yuece, Amir Rezvan, Matej Micusik, Maria Omastova, Juergen Eckert, A. Sezai Sarac

Summary: The incorporation of iron and carboxylic acid-functionalized polyaniline into polymeric polycaprolactone structures enhances the electron-donating ability and conductivity of the compound, making it suitable for electrochemical immunosensors.

MOLECULAR SYSTEMS DESIGN & ENGINEERING (2023)

Editorial Material Materials Science, Multidisciplinary

Editorial for Special Issue of Field-assisted Materials Processing: Recent Innovations and Microstructural Evolution

Chao Yang, Lai-Chang Zhang, Suryanarayana Challapalli

ADVANCED ENGINEERING MATERIALS (2023)

Article Materials Science, Multidisciplinary

Microstructural evolution and superelastic properties of ultrafine-grained NiTi-based shape memory alloy via sintering of amorphous ribbon precursor

W. S. Cai, H. Z. Lu, H. Z. Li, Z. Liu, H. B. Ke, W. H. Wang, C. Yang

Summary: An ultrafine-grained NiTi-based shape memory alloy with excellent superelasticity was successfully prepared through spark plasma sintering, and its microstructural evolution and superelastic properties were investigated. The results showed that residual nano-scale amorphous phase and coherent or semi-coherent fcc (Ti,Zr)2Ni precipitate played important roles in achieving perfect superelasticity.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Engineering, Manufacturing

Synergistic Strengthening Mechanisms of Dual-Phase (TiN plus AlN) Reinforced Aluminum Matrix Composites Prepared by Laser Powder Bed Fusion

Ruiqi Wang, Lixia Xi, Lili Feng, Baran Sarac, Konda Gokuldoss Prashanth, Juergen Eckert, Dongdong Gu

Summary: Dual-phase reinforcing approach is an efficient strategy for fabricating advanced aluminum matrix composites. However, designing a dual-phase reinforcing system with synergistic strengthening effect for LPBF process is challenging.

3D PRINTING AND ADDITIVE MANUFACTURING (2023)

Article Materials Science, Multidisciplinary

Solving the problem of solidification cracking during additive manufacturing of CrMnFeCoNi high-entropy alloys through addition of Cr3C2 particles to enhance microstructure and properties

Xintian Wang, Zhiyong Ji, Robert O. Ritchie, Ilya Okulov, Juergen Eckert, Chunlei Qiu

Summary: In this study, TiAl and Cr3C2 particles were added to a CrMnFeCoNi alloy to improve its processibility and mechanical properties. The addition of TiAl particles resulted in the formation of cracks, but the further addition of Cr3C2 particles helped suppress hot cracking. The presence of long-range ordered domains and precipitates contributed to the improved strength of the dual-particle containing alloy.

MATERIALS TODAY ADVANCES (2023)

Article Chemistry, Physical

Styrene-butadiene-styrene-based stretchable electrospun nanofibers by carbon nanotube inclusion

Baran Sarac, Remzi Gurbuz, Matej Micusik, Maria Omastova, Amir Rezvan, Eray Yuece, Lixia Xi, Juergen Eckert, Ali Ozcan, A. Sezai Sarac

Summary: This study focuses on the synthesis and properties comparison of a novel organic composite nanofiber material consisting of styrene-butadiene-styrene (SBS) copolymer blended with polystyrene (PStyr) and carbon nanotubes (CNTs). The addition of CNTs retards the crystallization process and decreases the absorbance of both SBS/PStyr and PStyr/PBu in Fourier transform infrared spectroscopy. The interaction of CNTs with the blend is limited in samples with SBS, as observed in Raman spectroscopy.

MOLECULAR SYSTEMS DESIGN & ENGINEERING (2023)

暂无数据