4.8 Article

Solution-Processed Polymer Solar Cells with over 17% Efficiency Enabled by an Iridium Complexation Approach

期刊

ADVANCED ENERGY MATERIALS
卷 10, 期 22, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202000590

关键词

iridium complexation; morphology; polymer solar cells; power conversion efficiency

资金

  1. National Natural Science Foundation of China (NSFC) [21702154, 51773157]
  2. Fundamental Research Funds for the Central Universities
  3. Key Laboratory of Materials Processing and Mold and Beijing National Laboratory for Molecular Sciences [BNLMS201905]

向作者/读者索取更多资源

The commercially available PM6 as donor materials are used widely in highly efficient nonfullerene polymer solar cells (PSCs). In this work, different concentrations of iridium (Ir) complexes (0, 0.5, 1, 2.5, and 5 mol%) are incorporated carefully into the polymer conjugated backbone of PM6 (PM6-Ir0), and a set of pi-conjugated polymer donors (named PM6-Ir0.5, PM6-Ir1, PM6-Ir2.5, and PM6-Ir5) are synthesized and characterized. It is demonstrated that the approach can rationally modify the molecular aggregations of polymer donors, effectively controlling the corresponding blend morphology and physical mechanisms, and finally improve the photovoltaic performance of the PM6-Irx-based PSCs. Among them, the best device based on PM6-Ir1:Y6 (1:1.2, w/w) exhibits outstanding power conversion efficiencies (PCEs) of 17.24% tested at Wuhan University and 17.32% tested at Institute of Chemistry, Chinese Academy of Sciences as well as a certified PCE of 16.70%, which are much higher than that of the control device based on the PM6-Ir0:Y6 blend (15.39%). This work affords an effective approach for further break through the reported champion PCE of the binary PSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据