4.8 Article

Ultra-dense optical data transmission over standard fibre with a single chip source

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16265-x

关键词

-

资金

  1. Australian Research Council [DP190102773, LE170100160]
  2. Natural Sciences and Engineering Research Council of Canada (NSERC) through the Strategic, Discovery, and Acceleration Grants Schemes
  3. MESI PSR-SIIRI Initiative in Quebec
  4. Canada Research Chair Program
  5. Government of the Russian Federation through the ITMO Fellowship [074-U 01]
  6. Government of the Russian Federation [074-U 01]
  7. 1000 Talents Sichuan Program
  8. Australian Research Council [LE170100160] Funding Source: Australian Research Council

向作者/读者索取更多资源

Micro-combs - optical frequency combs generated by integrated micro-cavity resonators - offer the full potential of their bulk counterparts, but in an integrated footprint. They have enabled breakthroughs in many fields including spectroscopy, microwave photonics, frequency synthesis, optical ranging, quantum sources, metrology and ultrahigh capacity data transmission. Here, by using a powerful class of micro-comb called soliton crystals, we achieve ultra-high data transmission over 75km of standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits s(-1) using the telecommunications C-band at 1550nm with a spectral efficiency of 10.4 bits s(-1) Hz(-1). Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with an extremely low soliton micro-comb spacing of 48.9GHz enable the use of a very high coherent data modulation format (64 QAM - quadrature amplitude modulated). This work demonstrates the capability of optical micro-combs to perform in demanding and practical optical communications networks. Microcombs provide many opportunities for integration in optical communications systems. Here, the authors implement a soliton crystal microcomb as a tool to demonstrate more than 44 Tb/s communications with high spectral efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据