4.8 Article

Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles

期刊

WATER RESEARCH
卷 173, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.115563

关键词

Mercury methylation; Algal bloom; Sediment-water interface; Anoxia remediation; Mercury microbial methylator; Mercury bioavailability

资金

  1. National Key R&D Program of China [2017YFA0207204, 2018YFD0800305]

向作者/读者索取更多资源

In mercury (Hg)-polluted eutrophic waters, algal blooms are likely to aggravate methylmercury (MeHg) production by causing intensified hypoxia and enriching organic matter at the sediment-water interface. The technology of interfacial oxygen (O-2) nanobubbles is proven to alleviate hypoxia and may have potential to mitigate the risks of MeHg formation. In this study, incubation column experiments were performed using sediment and overlying water samples collected from the Baihua Reservoir (China), which is currently suffering from co-contamination of Hg and eutrophication. The results indicated that after the application of O-2 nanobubbles, the %MeHg (ratio of MeHg to total Hg) in the overlying water and surface sediment decreased by up to 76% and 56% respectively. In addition, the MeHg concentrations decreased from 0.54 +/- 0.15 to 0.17 +/- 0.01 ng L-1 in the overlying water and from 56.61 +/- 9.23 to 25.48 +/- 4.08 ng g(-1) in the surface sediment. The decline could be attributed to the alleviation of anoxia and the decrease of labile organic matter and bioavailable Hg. In addition, hgcA gene abundances in the overlying water and surface sediment decreased by up to 69% and 44% after the addition of O-2 nanobubbles, as is consistent with MeHg occurrence in such areas. Accordingly, this work proposed a promising strategy of using interfacial oxygen nanobubbles to alleviate the potentially enhanced MeHg production during algal bloom outbreaks in Hg-polluted eutrophic waters. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据