4.7 Article

Shell-isolated nanoparticle-enhanced Raman spectroscopy for characterization of living yeast cells

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2020.118560

关键词

Metschnikowia pulcherrima yeast; Au@SiO2; SHINERS; SERS; Pulcherrimin

向作者/读者索取更多资源

Studying the biochemistry of yeast cells has enabled scientists to understand many essential cellular processes in human cells. Further development of biotechnological and medical progress requires revealing surface chemistry in living cells by using a non-destructive and molecular structure sensitive technique. In this study shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was applied for probing the molecular structure of Metschnikowia pulcherrima yeast cells. Important function of studied cells is the ability to eliminate iron from growth media by precipitating the insoluble pigment pulcherrimin. Comparative SERS and SHINERS analysis of the yeast cells in combination with bare Au and shell-isolated Au@SiO2 nanoparticles were performed. It was ob-served that additional bands, such as adenine ring-related vibrational modes appear due to interaction with bare Au nanoparticles; the registered spectra do not coincide with the spectra where Au@SiO2 nanoparticles were used. SHINERS spectra of M. pulcherrima were significantly enhanced comparing to the Raman spectra. Based on first-principles calculations and 830-nm excited Raman analysis of pulcherrimin, the SHINERS signatures of iron pigment in yeast cells were revealed. Being protected from direct interaction of metal with adsorbate, Au@SiO2 nanoparticles yield reproducible and reliable vibrational signatures of yeast cell wall constituents. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据