4.7 Article

The enhanced performance of capacitive-type humidity sensors based on ZnO nanorods/WS2 nanosheets heterostructure

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 310, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2020.127810

关键词

Humidity sensor; Capacitance; ZnO; WS2 nanosheets; Two-dimensional

资金

  1. Universitas Indonesia [NKB-0279/UN2.R3.1/HKP.05.00/2019]

向作者/读者索取更多资源

Zinc oxide (ZnO) is a promising candidate for humidity-sensing materials due to its low-cost preparation, superior chemical and thermal stability, controllable surface morphology, and low water solubility. However, pristine ZnO-based humidity sensors suffer from poor response and large hysteresis that limit their application. In this study, n-type semiconducting tungsten disulfide (WS2) was utilized to form ZnO nanorods/WS2 nanosheets heterostructure grown on indium fin oxide coplanar electrode-coated glass substrate. The capacitive-type humidity sensing characteristics were investigated at room temperature. The results show that for humidity ranges of 18-85 % RH, three deposition cycles of WS2 nanosheets onto ZnO nanorods produced significant improvements in the response, sensitivity, and hysteresis with an unchanged response and recovery times compared to pristine ZnO sensors. This improved sensor performance might be due to the ability of WS2 to provide more water molecule adsorption sites. The formation of an n-n junction between ZnO and WS2 created interfaces with high local charge density and built an internal electric field that increase the water dissociation rate. The improved hysteresis might be due to water molecule adsorption on WS2 nanosheets is physical adsorption that facilitates the desorption process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据