4.7 Article

A Sm-doped Egeria-densa-like ZnO nanowires@PVDF nanofiber membrane for high-efficiency water clean

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 737, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.139818

关键词

ZnO nanowires; Nanofiber membrane; Photocatalytic membrane; Dye; Water clean

资金

  1. National Natural Science Foundation of China [51573133]
  2. China Postdoctoral Science Foundation [2018M630276]
  3. Scientific Research Project of Tianjin Municipal Education Commission [2019ZD01]
  4. Natural Science Foundation of Ningbo [2018A610104]

向作者/读者索取更多资源

A biomimetic Egeria-densa-like hybrid composite nanofiber membrane was fabricated to degrade organic pollutants in water, with PVDF nanofibers as stems to provide support, and ZnO nanowires as leaves to provide active sites. The Sm-doped ZnO nanowires@PVDF nanofiber membranes were characterized by FE-SEM, X-ray photoelectron spectroscopy, Fourier transform infrared, X-ray diffraction, and UV-vis diffuse reflectance spectrometer. Compared with the pure ZnO nanowires@PVDF nanofiber membrane, the Sm-doped membrane showed higher photocatalytic performance. The excellent photocatalytic activity was attributed to the increased specific surface area and the decreased bandgap of ZnO nanowires after Sm doping, which inhibited the recombination rate of electrons and holes and improved the absorption of visible light. We found that the superoxide free radicals (center dot O-2(-)) played a critical role in photocatalytic degradation. The Sm-doped ZnO nanowires@PVDF nanofiber membrane exhibited good stability after 5 cycles of RhB degradation. We believe such Sm-doped hybrid membrane can work as an effective photocatalyst for wastewater treatment. (c) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据