4.8 Article

Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1919607117

关键词

bacterial biofilm; wrinkling instability; chemomechanical model of growth; Vibrio cholerae

资金

  1. Howard Hughes Medical Institute
  2. NSF [MCB-1713731, MCB1853602]
  3. NIH [1R21AI144223, 2R37GM065859, GM082938]
  4. NSF through the Princeton University Materials Research Science and Engineering Center [DMR-1420541]
  5. Max Planck Society-Alexander von Humboldt Foundation
  6. Burroughs Wellcome Fund
  7. Human Frontiers of Science Program [LT-000475/2018-C]

向作者/读者索取更多资源

During development, organisms acquire three-dimensional (3D) shapes with important physiological consequences. While basic mechanisms underlying morphogenesis are known in eukaryotes, it is often difficult to manipulate them in vivo. To circumvent this issue, here we present a study of developing Vibrio cholerae biofilms grown on agar substrates in which the spatiotemporal morphological patterns were altered by varying the agar concentration. Expanding biofilms are initially flat but later undergo a mechanical instability and become wrinkled. To gain mechanistic insights into this dynamic pattern-formation process, we developed a model that considers diffusion of nutrients and their uptake by bacteria, bacterial growth/biofilm matrix production, mechanical deformation of both the biofilm and the substrate, and the friction between them. Our model shows quantitative agreement with experimental measurements of biofilm expansion dynamics, and it accurately predicts two distinct spatiotemporal patterns observed in the experiments-the wrinkles initially appear either in the peripheral region and propagate inward (soft substrate/low friction) or in the central region and propagate outward (stiff substrate/high friction). Our results, which establish that nonuniform growth and friction are fundamental determinants of stress anisotropy and hence biofilm morphology, are broadly applicable to bacterial biofilms with similar morphologies and also provide insight into how other bacterial biofilms form distinct wrinkle patterns. We discuss the implications of forming undulated biofilm morphologies, which may enhance the availability of nutrients and signaling molecules and serve as a bet hedging strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据