4.4 Article

Nonlinear vibration of a nanocomposite laminated piezoelectric trapezoidal actuator in subsonic airflow under combined electrical and forcing excitations

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954406220911075

关键词

Piezoelectric laminated trapezoidal actuator; carbon nanotubes; internal resonance; subsonic airflow; nonlinear vibration; multiple scales method; combined parametric and external excitations

向作者/读者索取更多资源

This article investigates the nonlinear dynamic and vibration behaviors of a cantilevered carbon nanotube-reinforced composite trapezoidal plate with two surface-bonded piezoelectric layers as an actuator in micro air vehicles. The study applies large deflection von Karman plate assumptions and classical laminated plate theory to derive the governing equations, and considers the effects of different parameters on the nonlinear vibration of the thin laminated plate. Results show a complex softening nonlinearity with two peaks in the higher mode frequency response curves, and investigate the influence of electrical excitation on dynamic stability using time response curves.
The nonlinear dynamic and vibration behaviors of a cantilevered carbon nanotube-reinforced composite trapezoidal plate with two surface-bonded piezoelectric layers as an actuator in micro air vehicles are considered in this article. The plate is reinforced by single-walled carbon nanotubes and is exposed to subsonic airflow under combined parametric and external excitations. The large deflection von Karman plate assumptions and the classical laminated plate theory are applied to derive the governing equations of the motion of the piezoelectric nanocomposite laminated trapezoidal plate by using Hamilton's principle. The geometry of the trapezoidal plate is mapped into a rectangular computational domain. The Galerkin's approach is used for transforming the nonlinear partial differential equations of motion into nonlinear two-degrees-of-freedom ordinary differential equations of cubic nonlinearities. The case of 1:3 internal resonance and primary resonance is considered, and the multiple scales method is employed. The aerodynamic pressure distribution formula is modeled by linear potential flow theory. The frequency and time history responses and phase portrait in free forced vibrations are obtained to analyze the nonlinear dynamic behavior of the plate. The effects of different parameters such as the plate geometry, volume fraction of carbon nanotubes, and different excitations on the nonlinear vibration of the thin laminated plate are also discussed. A complex softening nonlinearity with two peaks in the higher mode is observed in frequency response curves. The influence of electrical excitation with several amplitudes and frequencies on dynamic stability is investigated using time response curves.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据