4.3 Article

On the Factors behind the Photocatalytic Activity of Graphene Quantum Dots for Organic Dye Degradation

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ppsc.202000061

关键词

dye photodegradation; graphene quantum dots; photocatalysis; reactive oxygen species; rhodamine B

资金

  1. Basque Government under the ELKARTEK program (ACTIMAT project) [KK-2018/00099]

向作者/读者索取更多资源

Graphene quantum dots (GQD) are promising visible-light photocatalysts for organic dye degradation. Besides having improved visible-light activity compared with commercial TiO2, GQD are versatile photocatalysts as their chemical composition and, consequently, optical properties can be tuned synthetically, with a direct impact on photoactivity. However, there is a lack of systematic comparative studies to benchmark GQD photocatalytic performance and relate it to their intrinsic properties. This is undertaken in this work for three types of GQD, which are prepared using well-established synthetic methods representative of top-down and bottom-up approaches using different precursors. Resulting GQD are similar in size but differ in chemical composition, crystallinity, bandgap (ranging from 2.63 to 3.63 eV) and visible-light absorptivity. Photoactivity measurements under comparable experimental conditions (visible-light illumination) reveal enormous activity differences for rhodamine B (RhB) degradation, with up to tenfold higher degradation yields at the same time for certain GQD types. The enormous influence of intrinsic and tunable GQD factors, like visible-light absorptivity and surface charge, on their photoactivity for the degradation of organic dyes is demonstrated, highlighting the importance of tailoring such parameters for enhanced photocatalytic performance. A plausible mechanism for GQD-catalyzed photodegradation of RhB is also proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据