4.8 Article

The hyperthermophilic partners Nanoarchaeum and Ignicoccus stabilize their tRNA T-loops via different but structurally equivalent modifications

期刊

NUCLEIC ACIDS RESEARCH
卷 48, 期 12, 页码 6906-6918

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkaa411

关键词

-

资金

  1. Danish Research Agency [FNU rammebevilling] [10084554]
  2. Deutsche Forschungsgemeinschaft [Forderkennzeichen] [HU701/2]
  3. FNU-rammebevilling [10-084554]

向作者/读者索取更多资源

The universal L-shaped tertiary structure of tRNAs is maintained with the help of nucleotide modifications within the D- and T-loops, and these modifications are most extensive within hyperthermophilic species. The obligate-commensal Nanoarchaeum equitans and its phylogenetically-distinct host Ignicoccus hospitalis grow physically coupled under identical hyperthermic conditions. We report here two fundamentally different routes by which these archaea modify the key conserved nucleotide U54 within their tRNA T-loops. In N. equitans, this nucleotide is methylated by the S-adenosylmethionine-dependent enzyme NEQ053 to form m(5)U54, and a recombinant version of this enzyme maintains specificity for U54 in Escherichia coli. In N. equitans, m(5)U54 is subsequently thiolated to form m(5)s(2)U54. In contrast, I. hospitalis isomerizes U54 to pseudouridine prior to methylating its N1-position and thiolating the O4-position of the nucleobase to form the previously uncharacterized nucleotide m(1)s(4)Psi. The methyl and thiol groups in m(1)s(4)Psi and m(5)s(2)U are presented within the T-loop in a spatially identical manner that stabilizes the 3'-endo-anti conformation of nucleotide-54, facilitating stacking onto adjacent nucleotides and reverse-Hoogsteen pairing with nucleotide m(1)A58. Thus, two distinct structurally-equivalent solutions have evolved independently and convergently to maintain the tertiary fold of tRNAs under extreme hyperthermic conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据