4.5 Article

Binding of Pollutants to Biomolecules: A Simulation Study

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 29, 期 10, 页码 1679-1688

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrestox.6b00189

关键词

-

资金

  1. Scientific and Technical Research Council of Turkey (TUBITAK, International Postdoctoral Research Scholarship Programme) [2219]
  2. Zhejiang University
  3. Swedish research council [2013-5947]
  4. High Performance Computing Center North in lima, Sweden [SNIC2013-26-6]
  5. PDC Center for High Performance Computing at the Royal Institute of Technology, Stockholm, Sweden

向作者/读者索取更多资源

A number of cases around the world have been reported where animals were found dead or dying with symptoms resembling a thiamine (vitamin B) deficiency, and for some of these, a link to pollutants has been suggested. Here, we investigate whether biomolecules involved in thiamin binding and transport could be blocked by a range of different pollutants. We used in silico docking of five compound classes (25 compounds in total) to each of five targets (prion protein, ECF-type ABC transporter, thi-box riboswitch receptor, thiamin pyrophosphokinase, and YKoF protein) and subsequently performed molecular dynamics (MD) simulations to assess the stability of the complexes. The compound classes were thiamin analogues (control), pesticides, veterinary medicines, polychlorinated biphenyls, and dioxins, all of which are prevalent in the environment to some extent. A few anthropogenic compounds were found to bind the ECF-type ABC transporter, but none binds stably to prion protein. For the riboswitch, most compounds remained in their binding pockets during 50 ns of MD simulation, indicating that RNA provides a promiscuous binding site. In both YKoF and thiamin pyrophosphokinase (TPK), most compounds remain tightly bound. However, TPK biomolecules undergo pollutant-induced conformational changes. Although most compounds are found to bind to some of these targets, a larger data set is needed along with more quantitative methods like free energy perturbation calculations before firm conclusions can be drawn. This study is in part a test bed for large-scale quantitative computational screening of interactions between biological entities and pollutant molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据