4.8 Article

Separase-triggered apoptosis enforces minimal length of mitosis

期刊

NATURE
卷 580, 期 7804, 页码 542-+

出版社

NATURE RESEARCH
DOI: 10.1038/s41586-020-2187-y

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [STE997/4-2]

向作者/读者索取更多资源

Prolonged mitosis often results in apoptosis(1). Shortened mitosis causes tumorigenic aneuploidy, but it is unclear whether it also activates the apoptotic machinery(2). Separase, a cysteine protease and trigger of all eukaryotic anaphases, has a caspase-like catalytic domain but has not previously been associated with cell death(3,4). Here we show that human cells that enter mitosis with already active separase rapidly undergo death in mitosis owing to direct cleavage of anti-apoptotic MCL1 and BCL-XL by separase. Cleavage not only prevents MCL1 and BCL-XL from sequestering pro-apoptotic BAK, but also converts them into active promoters of death in mitosis. Our data strongly suggest that the deadliest cleavage fragment, the C-terminal half of MCL1, forms BAK/BAX-like pores in the mitochondrial outer membrane. MCL1 and BCL-XL are turned into separase substrates only upon phosphorylation by NEK2A. Early mitotic degradation of this kinase is therefore crucial for preventing apoptosis upon scheduled activation of separase in metaphase. Speeding up mitosis by abrogation of the spindle assembly checkpoint results in a temporal overlap of the enzymatic activities of NEK2A and separase and consequently in cell death. We propose that NEK2A and separase jointly check on spindle assembly checkpoint integrity and eliminate cells that are prone to chromosome missegregation owing to accelerated progression through early mitosis. If early mitosis is too short, separase induces apoptosis by cleaving MCL2 and BCL-XL, thereby eliminating cells that are prone to chromosome missegregation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据