4.6 Article

DEM simulation on the packing of fine ellipsoids

期刊

CHEMICAL ENGINEERING SCIENCE
卷 156, 期 -, 页码 64-76

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2016.09.017

关键词

Packing; Ellipsoids; Fine particles; Van der Waals force; Discrete element method

资金

  1. Australian Research Council [DP140103977]

向作者/读者索取更多资源

In this work, discrete element method (DEM) is used to study the effect of particle size and aspect ratio on packing structure of fine ellipsoids. It shows that porosity and coordination number significantly change with particle size and shape. The porosity-aspect ratio curve has minima at around 0.5 for oblate spheroids and 1.5 for prolate spheroids, but the cusp at 1.0 varies from convex to concave when particle size reduces as a result of the increasing role of the cohesive forces between particles. The coordination number-aspect ratio curves change from a strong to weak M shape when particle size reduces. Based on the results, equations are formulated to describe the correlation between bed porosity, aspect ratio, and particle size or force ratio. Microscopically, the radial distribution function is also affected by both particle size and shape. Fine particles have more disordered structure than coarse particles, and the packing of fine spheres is more ordered than fine ellipsoids. For coarse ellipsoids, majority of particles tend to orient horizontally, but the preferred orientation become worse when reducing particle size. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据