4.7 Article

Asymmetric Alternating Copolymerization of CO2 with meso-Epoxides: Ring Size Effects of Epoxides on Reactivity, Enantioselectivity, Crystallization, and Degradation

期刊

MACROMOLECULES
卷 53, 期 8, 页码 2912-2918

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.9b02407

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [21871036, 21690073]
  2. Program for Chang Jiang Scholars and Innovative Research Team in University [IRT-17R14]

向作者/读者索取更多资源

In this study, we report a systematical investigation regarding the ring size effects of meso-epoxides on reactivity and enantioselectivity as well as crystallization and degradation of the polycarbonates resulting from the asymmetric alternating copolymerization of various alicyclic epoxides (cyclopentene oxide, cyclohexene oxide, cycloheptene oxide, and cyclooctene oxide) with CO2 using the privileged chiral catalyst system of biphenol-linked bimetallic salcyCo(III)DNP complex and PPN-DNP (PPN = bis-(triphenylphosphine)iminium and DNP = 2,4-dinitrophenoxide). The ring size of meso-epoxides has a strong impact on both reactivity and enantioselectivity: epoxide with a six-membered ring is highly reactive, five- or seven-membered-ring fused epoxide is less reactive, and especially, no copolymerization reactivity is observed for cyclooctene oxide with an eight-membered ring due to the inherent high steric hindrance of the crowded catalytic active site for binding the epoxide and growing copolymer chain. Moreover, a reverse relationship was discovered between copolymerization reactivity and enantioselectivity. In addition, further investigation has demonstrated that the ring size of mesoepoxides also impacts significantly crystallization, stereocomplexation, and degradation of the resultant polycarbonates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据