4.7 Article

A DFT study of Hg0 adsorption on Co3O4 (110) surface

期刊

CHEMICAL ENGINEERING JOURNAL
卷 289, 期 -, 页码 349-355

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2015.12.090

关键词

Elemental mercury; Co3O4; Adsorption energy; Equilibrium constants; PDOS

资金

  1. National Science Foundation of China [21177083]
  2. program for New Century Excellent Talents in Shanghai Jiao Tong University
  3. Wyoming Clean Coal Program

向作者/读者索取更多资源

Spin polarized density functional theory calculation combined with periodic slabs were employed to reveal the elemental mercury (Hg-0) adsorption mechanism on Co3O4 (110) surface. The adsorption energies and possible adsorption sites were investigated. To understand the adsorption interaction more directly, the electronic structural changes of before and after adsorption were compared. The hybridization of orbitals was studied by the partial density of states (PDOS) analysis. In addition, the temperature effects toward equilibrium constants of Hg-0-Co3O4 system were taken into consideration. The results manifested that the interaction between Hg-0 and Co3O4 (11 0) surface is chemisorption with -74.037 klimol. Co3+ sites, the highest oxidation state of Co atoms, are crucial in this process which can accept the electrons after Hg-0 oxidation. The redundant electrons transfer to 0 and other Co atoms nearby. PDOS analysis indicates the hybridization of s orbitals (Hg-0) and p, d orbitals (Co atom). And d orbitals of Hg-0 interacts with s, p orbitals of Co atom strongly. The trends of equilibrium constants suggest that Hg-0 adsorption on Co3O4 (1 1 0) surface is favorable at low temperature. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Chemistry, Multidisciplinary

Emerging catalysts for the ambient synthesis of ethylene glycol from CO2 and its derivatives

Runping Ye, Yuan-Yuan Huang, Chong-Chong Chen, Yuan-Gen Yao, Maohong Fan, Zhangfeng Zhou

Summary: This article reviews various approaches to synthesize ethylene glycol (EG) from CO2 and its derivatives under mild conditions, including thermocatalysis, photocatalysis, and electrocatalysis. The coal-to-ethylene glycol technology, a mature thermal catalytic method, still faces challenges in industrialization. The recent progress in the development of coal-to-ethylene glycol technology is discussed, with a focus on achieving EG synthesis under mild conditions through strategies such as doping promoters, support modification, and catalyst design. The emerging technological progress of photocatalytic and electrocatalytic EG synthesis under ambient conditions is also introduced, highlighting the need to address issues for large-scale production. Future development issues and prospects for ambient EG synthesis using different catalytic routes are proposed.

CHEMICAL COMMUNICATIONS (2023)

Article Chemistry, Physical

Unraveling the Surface State Evolution of IrO2 in Ethane Chemical Looping Oxidative Dehydrogenation

Lulu Ping, Yuan Zhang, Baojun Wang, Maohong Fan, Lixia Ling, Riguang Zhang

Summary: Based on the advantages of ethane oxidative dehydrogenation and the challenge of low ethylene selectivity, chemical looping oxidative dehydrogenation (CL-ODH) over the IrO2 catalyst was studied. The study revealed that both S-IrO2 and R-IrO2 states exist for the IrO2 catalyst in the dehydrogenation and regeneration processes, and the optimal reaction conditions were determined. This research expands the understanding of ethane CL-ODH over metal oxide catalysts and provides valuable information for process optimization and catalyst development.

ACS CATALYSIS (2023)

Article Nanoscience & Nanotechnology

Ethane Dehydrogenation over the Core-Shell Pt-Based Alloy Catalysts: Driven by Engineering the Shell Composition and Thickness

Yuan Zhang, Baojun Wang, Maohong Fan, Lixia Ling, Riguang Zhang

Summary: In this study, a strategy to improve the catalytic performance of Pt-Sn alloy catalysts in ethane dehydrogenation (EDH) is proposed by engineering the shell surface structure and thickness. Density functional theory (DFT) calculations and kinetic Monte Carlo (kMC) simulations are used to understand the influences of catalyst surface structure, temperature, and reactant partial pressures. The results demonstrate that Pt@Pt3Sn catalysts generally have higher C2H4(g) activity and lower selectivity compared to Pt3Sn@Pt catalysts, due to their unique surface geometrical and electronic properties.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Nanoscience & Nanotechnology

Intelligent Chip-Controlled Smart Oxygen Electrodes for Constructing Rechargeable Zinc-Air Batteries with Excellent Energy Efficiency and Durability

Lulu Chai, Jinlu Song, Yanzhi Sun, Xiaoguang Liu, Xifei Li, Maohong Fan, Junqing Pan, Xueliang Sun

Summary: This study proposes a smart dual-oxygen electrode for high-specific-energy batteries, which addresses the issues of energy efficiency decay, wide charge-discharge gap, and catalyst peeling. The electrode consists of a switch control module, OER and ORR catalysis layers, and an ion conductive | electronic insulating membrane. The electrode shows an ultralow energy efficiency decay rate and enables a high energy efficiency in zinc-air batteries.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Physical

Syngas-to-C2 oxygenates over the inverse Mo6C4/Cu catalyst: Identifying the role of synergistic effect

Wantong Zhao, Xuebai Lan, Baojun Wang, Maohong Fan, Riguang Zhang

Summary: In this study, the inverse Mo6C4/Cu catalyst is modeled and predicted to promote C2 oxygenates formation in syngas transformation. The results show that the inverse Mo6C4/Cu catalyst greatly improves catalytic performance and facilitates C2 oxygenate production compared to previous catalysts. This is attributed to the synergistic effect between Mo6C4 cluster with Cu catalyst, which easily activates CO to produce CH2 monomer and facilitates CO insertion into CH2 to CH2CO.

APPLIED SURFACE SCIENCE (2023)

Article Energy & Fuels

Simultaneous removal of NO and SO2 by Fe(II)/peracetic acid oxidation system: Operating conditions, removal efficiency and removal mechanism

Kunpeng Li, Hui Hu, Maohong Fan, Mi Zhang, Zhongming Chen, Ruibin Lv, Hao Huang

Summary: An advanced oxidation process (AOPs) using Fe(II) activated peracetic acid (PAA) was investigated for the simultaneous removal of SO2 and NO from flue gas. The maximum removal efficiencies obtained were 92.3% for NO and 99.5% for SO2 under optimal conditions. Reactive oxidizing species and organic radicals were generated in the Fe(II)/PAA system, with organic radicals confirmed to be the major factors affecting NO oxidation. The main products of SO2 and NO removal were identified as SO42- and NO3-.
Review Chemistry, Multidisciplinary

Electrospun Carbon Nanofibers and Their Applications in Several Areas

Tongtong Wang, Zhe Chen, Weibo Gong, Fei Xu, Xin Song, Xin He, Maohong Fan

Summary: Carbon nanofibers (CNFs) have diverse applications in sensor manufacturing, electrochemical catalysis, and energy storage. Electrospinning is a powerful commercial large-scale production technique for CNFs due to its simplicity and efficiency. This paper discusses the working theory of manufacturing electrospun CNFs, current efforts in upgrading CNF properties, and the corresponding applications. Future development of CNFs is also discussed.

ACS OMEGA (2023)

Article Chemistry, Physical

C2H2 Semi-hydrogenation over S-modified PdM IMCs: Tuning catalytic performance by surface S Atom, and metal M type and ratio

Yueyue Wu, Xinyi Guo, Xiufeng Shi, Baojun Wang, Maohong Fan, Riguang Zhang

Summary: This study investigates the catalytic performance of a series of S-modified PdM IMCs with different M types (Cu, Ag and Au) and ratios (1: 1, 3: 1 and 1: 3) in C2H2 semi-hydrogenation using DFT calculations and microkinetic modeling. The results show that the catalytic performance strongly depends on the space region of metal active site and the electronic properties induced by S atoms and the M type and ratio. Only S/Pd1Ag1 and S/Pd1Au1 exhibit higher H2 dissociation activity, C2H4 selectivity and production activity, and can effectively inhibit the formation of green oil.

APPLIED SURFACE SCIENCE (2023)

Article Energy & Fuels

Rational design and reduction kinetics of efficient Ce-Co oxygen carriers for chemical looping reforming of methane

Weixiang Zhang, Lina Zhang, Sijia Pei, Jiarui Wang, Dawei Liu, Xiaoxun Ma, Maohong Fan, Long Xu

Summary: One of the most significant topics in chemical looping reforming technology is the design and preparation of appropriate oxygen carriers with high reactivity and excellent stability. This study focuses on the chemical looping reforming of methane using cobalt-doped Ce-based oxygen carriers synthesized via the solution combustion method with the assistance of coconut shell. The introduction of cobalt decreases the crystallite size, increases oxygen vacancy concentration and lattice oxygen mobility, and the addition of coconut shell further enhances these positive changes and the interaction between Ce and Co.
Editorial Material Multidisciplinary Sciences

Direct synthesis of urea from carbon dioxide and ammonia

Jie Ding, Runping Ye, Yanghe Fu, Yiming He, Ye Wu, Yulong Zhang, Qin Zhong, Harold H. Kung, Maohong Fan

Summary: Urea, a crucial nitrogen fertilizer, plays a vital role in meeting global food demand. However, its current production method is energy-intensive and environmentally unfriendly. In this commentary article, the authors propose strategies to address and overcome these challenges.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Physical

Enabling Low-Temperature Methanol Activation via Lattice Oxygen Induced Cu-O-Cr Catalysis

Zhao Sun, Shufan Yu, Sam Toan, Rufat Abiev, Maohong Fan, Zhiqiang Sun

Summary: In this study, CuCr2O4-based catalytic oxygen carriers were designed for low-temperature methanol reforming. The activation of methanol at relatively low temperatures was achieved through the reinforcement of the Cu-O-Cr structure and the induction of highly reactive lattice oxygen. The hydrogen production rate was significantly increased by 53.2% with the application of CuCr2O4-based catalytic oxygen carriers. Furthermore, the Cu-O-Cr structure demonstrated satisfactory cyclic stability.

ACS CATALYSIS (2023)

Article Energy & Fuels

Enhancement of catalytic activity of PAl-NaX catalyst for side-chain alkylation of toluene with methanol: Effects of dehydrogenation component Cu

Chengda Li, Yueli Wen, Bin Wang, Maohong Fan, Wenlong Liu, Zheng Cui, Wei Huang

Summary: Activation and desorption of hydrogen in toluene methyl is the rate-limiting step for side-chain alkylation of toluene with methanol. In this study, two dehydrogenation strategies were employed to enhance catalytic performance by introducing Cu as a dehydrogenation component in PAl-NaX catalyst and adjusting the acid-base properties through varying NaOH loading. The relationship between the percentage of acid-base sites, low valence Cu species, and catalytic performance was investigated using various characterization techniques and ternary regression analysis. The results showed that Cu, especially low valence Cu species, promoted the selectivity of side-chain alkylation products to some extent, but base sites played a more critical role in enhancing selectivity.
Article Chemistry, Physical

Unraveling the Surface State Evolution of IrO2 in Ethane Chemical Looping Oxidative Dehydrogenation

Lulu Ping, Yuan Zhang, Baojun Wang, Maohong Fan, Lixia Ling, Riguang Zhang

Summary: Based on favorable thermodynamics and coking resistance, chemical looping oxidative dehydrogenation (CL-ODH) of ethane over IrO2 catalyst was studied. Two extreme states of the IrO2 surface structure, S-IrO2 and R-IrO2, were considered. It was found that the mechanisms of ethane dehydrogenation over S-IrO2 and R-IrO2 catalysts were different. The present study contributes to the understanding of ethane CL-ODH over metal oxide catalysts and provides valuable insights for process optimization and catalyst development.

ACS CATALYSIS (2023)

Article Chemistry, Multidisciplinary

Boosting Low-Temperature CO2 Hydrogenation over Ni-based Catalysts by Tuning Strong Metal-Support Interactions

Runping Ye, Lixuan Ma, Xiaoling Hong, Tomas Ramirez Reina, Wenhao Luo, Liqun Kang, Gang Feng, Rongbin Zhang, Maohong Fan, Riguang Zhang, Jian Liu

Summary: This study presents a strategy to enhance the low-temperature CO2 activation through regulating the local electron density of active sites. An optimized Ni/ZrO2 catalyst exhibits excellent performance for CO2 methanation, with high CO2 conversion, CH4 selectivity, and stability, making it one of the best Ni-based catalysts for CO2 methanation to date.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

C2H2 semi-hydrogenation over N-doped graphene supported diatomic metal catalysts: Unraveling the roles of metal type and its coordination environment in tuning catalytic performance

Xuebai Lan, Mifeng Xue, Baojun Wang, Maohong Fan, Riguang Zhang

Summary: This study investigates the performance of diatomic metal catalysts in the semi-hydrogenation of C2H2 by constructing different types of DACs and tuning their coordination environments. The results show that CoCu@N6V4-11, CoPd@N6V4-11, CoNi@N6V4-11, and CoPt@N6V4-11 DACs exhibit superior C2H4 selectivity, formation activity, and stability. Introducing a second metal can significantly improve C2H4 selectivity while maintaining high C2H4 formation activity.

APPLIED SURFACE SCIENCE (2023)

Article Engineering, Environmental

A metal-phenolic network-assembled nanotrigger evokes lethal ferroptosis via self-supply loop-based cytotoxic reactions

Xinping Zhang, Yuxin Guo, Xiaoyang Liu, Shun-Yu Wu, Ya-Xuan Zhu, Shao-Zhe Wang, Qiu-Yi Duan, Ke-Fei Xu, Zi-Heng Li, Xiao-Yu Zhu, Guang-Yu Pan, Fu-Gen Wu

Summary: This study develops a nanotrigger HCFT for simultaneous photodynamic therapy and light-triggered ferroptosis therapy. The nanotrigger can relieve tumor hypoxia, induce enhanced photodynamic reaction, and facilitate the continuation of Fenton reaction, ultimately leading to lethal ferroptosis in tumor cells.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

XAS and DFT investigation of atomically dispersed Cu/Co alloyed Pt local structures under selective hydrogenation of acetylene to ethylene

Olumide Bolarinwa Ayodele, Toyin Daniel Shittu, Olayinka S. Togunwa, Dan Yu, Zhen-Yu Tian

Summary: This study focused on the semihydrogenation of acetylene in an ethylene-rich stream using two alloyed Pt catalysts PtCu and PtCo. The PtCu catalyst showed higher activity and ethylene yield compared to PtCo due to its higher unoccupied Pt d-orbital density. This indicates that alloying Pt with Cu is more promising for industrial relevant SHA catalyst.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A multifunctional emitter with synergistical adjustment of rigidity and flexibility for high-performance data-recording and organic light-emitting devices with hot exciton channel

Guowei Chen, Wen-Cheng Chen, Yaozu Su, Ruicheng Wang, Jia-Ming Jin, Hui Liang, Bingxue Tan, Dehua Hu, Shaomin Ji, Hao-Li Zhang, Yanping Huo, Yuguang Ma

Summary: This study proposes an intramolecular dual-locking design for organic luminescent materials, achieving high luminescence efficiency and performance for deep-blue organic light-emitting diodes. The material also exhibits unique mechanochromic luminescence behavior and strong fatigue resistance.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Cobalt/nickel purification by solvent extraction with ionic liquids in millifluidic reactors: From single-channel to numbered-up configuration with solvent recycle

Joren van Stee, Gregory Hermans, Jinu Joseph John, Koen Binnemans, Tom Van Gerven

Summary: This work presents a continuous solvent extraction method for the separation of cobalt and nickel in a millifluidic system using Cyphos IL 101 (C101) as the extractant. The optimal conditions for extraction performance and solvent properties were determined by investigating the effects of channel length, flow rate, and temperature. The performance of a developed manifold structure was compared to a single-channel system, and excellent separation results were achieved. The continuous separation process using the manifold structure resulted in high purity cobalt and nickel products.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Environment-triggered nanoagent with programmed gas release performance for accelerating diabetic infected wound healing

Yan Xu, Jingai Jiang, Xinyi Lv, Hui Li, Dongliang Yang, Wenjun Wang, Yanling Hu, Longcai Liu, Xiaochen Dong, Yu Cai

Summary: A programmed gas release nanoparticle was developed to address the challenges in treating diabetic infected wounds. It effectively removes drug-resistant pathogens and remodels the wound microenvironment using NO and H2S. The nanoparticle can eliminate bacteria and promote wound healing through antibacterial and anti-inflammatory effects.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Synergistic dopa-reinforced fluid hydrosol as highly efficient coal dust suppressant

Tong Xia, Zhilin Xi, Lianquan Suo, Chen Wang

Summary: This study investigated a highly efficient coal dust suppressant with low initial viscosity and high adhesion-solidification properties. The results demonstrated that the dust suppressant formed a network of multiple hydrogen bonding cross-linking and achieved effective adhesion and solidification of coal dust through various chemical reactions.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

First principle-based rate equation theory for the carbonation kinetics of CaO with CO2 in calcium looping

Jinzhi Cai, Zhenshan Li

Summary: A density functional theory-based rate equation was developed to predict the gas-solid reaction kinetics of CaO carbonation with CO2 in calcium looping. The negative activation energy of CaO carbonation close to equilibrium was accurately predicted through experimental validation.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

Jianxiong Chen, Fuhao Ren, Ningning Yin, Jie Mao

Summary: This study presents an economically efficient and easily implementable surface modification approach to enhance the high-temperature electrical insulation and energy storage performance of polymer dielectrics. The self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Medium entropy metal oxide induced *OH species targeted transfer strategy for efficient polyethylene terephthalate plastic recycling

Zijian Li, Zhaohui Yang, Shao Wang, Hongxia Luo, Zhimin Xue, Zhenghui Liu, Tiancheng Mu

Summary: This study reports a strategy for upgrading polyester plastics into value-added chemicals using electrocatalytic methods. By inducing the targeted transfer of *OH species, polyethylene terephthalate was successfully upgraded into potassium diformate with high purity. This work not only develops an excellent electrocatalyst, but also provides guidance for the design of medium entropy metal oxides.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A novel environmental friendly and sustainable process for textile dyeing with sulphur dyes for cleaner production

Navneet Singh Shekhawat, Surendra Kumar Patra, Ashok Kumar Patra, Bamaprasad Bag

Summary: This study primarily focuses on developing a sulphur dyeing process at room temperature using bacterial Lysate, which is environmentally friendly, energy and cost effective, and sustainable. The process shows promising improvements in dye uptake and fastness properties.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Highly efficient and sustainable cationic polyvinyl chloride nanofibrous membranes for removal of E. coli and Cr (VI): Filtration and adsorption

Dengjia Shen, Hongyang Ma, Madani Khan, Benjamin S. Hsiao

Summary: This study developed cationic PVC nanofibrous membranes with high filtration and adsorption capability for the removal of bacteria and hexavalent chromium ions from wastewater. The membranes demonstrated remarkable performance in terms of filtration efficiency and maximum adsorption capacity. Additionally, modified nanofibrous membranes were produced using recycled materials and showed excellent retention rates in dynamic adsorption processes.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Concerted proton-coupled electron transfer promotes NiCoP nanowire arrays for efficient overall water splitting at industrial-level current density

Xiaoyan Wang, Zhikun Wang, Ben Jia, Chunling Li, Shuangqing Sun, Songqing Hu

Summary: Inspired by photosystem II, self-supported Fe-doped NiCoP nanowire arrays modified with carboxylate were constructed to boost industrial-level overall water splitting by employing the concerted proton-coupled electron transfer mechanism. The introduction of Fe and carboxyl ligand led to improved catalytic activity for HER and OER, and NCFCP@NF exhibited long-term durability for overall water splitting.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Self-limiting growth of thin dense LTA membranes boosts H2 gas separation performance

Pengyao Yu, Ge Yang, Yongming Chai, Lubomira Tosheva, Chunzheng Wang, Heqing Jiang, Chenguang Liu, Hailing Guo

Summary: Thin LTA zeolite membranes were prepared through secondary growth of nano LTA seeds in a highly reactive gel, resulting in membranes with superior permeability and selectivity in gas separation applications.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Prediction of phosphate adsorption amount, capacity and kinetics via machine learning: A generally physical-based process and proposed strategy of using descriptive text messages to enrich datasets

Baiqin Zhou, Huiping Li, Ziyu Wang, Hui Huang, Yujun Wang, Ruichun Yang, Ranran Huo, Xiaoyan Xu, Ting Zhou, Xiaochen Dong

Summary: The use of machine learning to predict the performance of specific adsorbents in phosphate adsorption shows great promise in saving time and revealing underlying mechanisms. However, the small size of the dataset and insufficient detailed information limits the model training process and the accuracy of results. To address this, the study employs a fuzzing strategy that replaces detailed numeric information with descriptive text messages on the physiochemical properties of adsorbents. This strategy allows the recovery of discarded samples with limited information, leading to accurate prediction of adsorption amount, capacity, and kinetics. The study also finds that phosphate uptake by adsorbents is generally through physisorption, with some involvement of chemisorption. The framework established in this study provides a practical approach for quickly predicting phosphate adsorption performance in urgent scenarios, using easily accessible information.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Absorption of hydrophobic volatile organic compounds in renewable vegetable oils and esterified fatty acids: Determination of gas-liquid partitioning coefficients as a function of temperature

Paula Alejandra Lamprea Pineda, Joren Bruneel, Kristof Demeestere, Lisa Deraedt, Tex Goetschalckx, Herman Van Langenhove, Christophe Walgraeve

Summary: This study evaluates the use of four esterified fatty acids and three vegetable oils as absorption liquids for hydrophobic VOCs. The experimental results show that isopropyl myristate is the most efficient liquid for absorbing the target VOCs.

CHEMICAL ENGINEERING JOURNAL (2024)