4.7 Article

Sensitive, Rapid, Robust, and Reproducible Workflow for Host Cell Protein Profiling in Biopharmaceutical Process Development

期刊

JOURNAL OF PROTEOME RESEARCH
卷 19, 期 8, 页码 3396-3404

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jproteome.0c00252

关键词

host cell proteins (HCPs); monoclonal antibody (mAb); drug products (DPs); drug substances (DS)

向作者/读者索取更多资源

There is a growing industry and regulatory need to detect host cell protein (HCP) impurities in the production of protein biopharmaceuticals, as certain HCPs can impact product stability, safety, and efficacy, even at low levels. In some cases, regulatory agencies require the identification and the quantification of HCPs in drug products (DPs) for risk assessment, and this is an active and growing topic of conversation in the industry and amongst regulators. In this study, we developed a sensitive, robust, and reproducible workflow for HCP detection and quantification in a significantly shorter turnaround time than that previously reported using an Evosep ONE LC system coupled to an Orbitrap Fusion Lumos mass spectrometer. Because of its fast turnaround time, this HCP workflow can be integrated into process development for the high-throughput (60 samples analyzed per day) identification of HCPs. The ability to rapidly measure HCPs and follow their clearance throughout the downstream process can be used to pinpoint sources of HCP contamination, which can be used to optimize biopharmaceutical production to minimize HCP levels. Analysis of the NIST monoclonal antibody reference material using the rapid HCP profiling workflow detected the largest number of HCPs reported to date, underscoring an improvement in performance along with an increased throughput. The HCP workflow can be readily implemented and adapted for different purposes to guide biopharmaceutical process development and enable better risk assessment of HCPs in drug substances and DPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据