4.5 Article

Deformation mechanisms and defect tolerance in the microstructure of 3D-printed alloys

期刊

JOURNAL OF MATERIALS RESEARCH
卷 35, 期 15, 页码 1984-1997

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/jmr.2020.60

关键词

3D printing metals; additive manufacturing; microstructure; defect tolerance

向作者/读者索取更多资源

A novel approach is utilized to investigate the deformation mechanisms at the microstructural level in 3D-printed alloys. The complex formation methods leave a unique and complicated microstructure in the as-built 3D-printed alloys. The microstructure is three leveled, composed of meltpools, grains, and cells. Deformation mechanisms in this microstructure are still highly unexplored due to the complexities of analysis at this scale. To understand these, we establish an image processing framework that converts scanning electron microscope (SEM) images directly into models that are scaled up and 3D printed with representative stiff and soft materials for the proposed material types within the body. These bodies are loaded in uniaxial tension with digital image correlation to study the strain gradient and stress delocalization as a result of the microstructure. The same models were tested through Finite Element Analysis (FEA) with materials similar to reality. Our testing shows the hierarchical material distribution leads to an increased damage tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据