4.7 Article

Improved catalytic activity on the thermal decomposition of ammonium perchlorate and efficient adsorption of uranium using a novel ultra-low density Al2O3-based aerogels

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 387, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122015

关键词

Solution-freeze-drying; Ultra-low density; Al2O3 aerogels; Adsorption; Thermal insulation; Catalysts supports

资金

  1. Institute of Chemical Materials and Research Center of Laser Fusion, China Academy of Engineering Physics
  2. National Natural Science Foundation of China [11602239]
  3. Foundation of Sichuan Educational Committee [16ZB0151]
  4. Career Development Funding of CAEP [2402001]
  5. Research Fund for the Doctoral Program of Southwest University of Science and Technology [17zx7135]

向作者/读者索取更多资源

The ultra-low density AlCl3-chitosan composite aerogel was prepared via a novel solution-freeze-drying technology. Then, the AlCl3-chitosan aerogel was carbonized or calcined to remove the chitosan template, yielding ultra-low density Al2O3-based aerogels with good formation ability. The density of Al2O3-based aerogels were about 9 mg/cm(3) via this method. Moreover, the Al2O3-based aerogel obtained from the calcination of AlCl3-chitosan aerogel copied the open networks of thin flakes layered structure of chitosan template. The as-prepared Al2O3 aerogel had a low thermal conductivity of about 0.039 W/m K after high temperature treatment at 1000 degrees C, demonstrating its good thermal insulation property. The results of TG/DSC showed that the Al2O3-(0.2 wt% Pt) catalysts could decrease decomposition temperature of ammonium perchlorate (AP) by 51.1 degrees C and the exothermic heat was increased from 133.2 J/g to 1552.7 J/g. The maximum adsorption amounts for U(VI) of Al2O3 aerogel reached 769.9 mg/g, which was about 2 times higher than that of Al2O3 with other forms. Accordingly, the Al2O3 aerogel with thin flakes layered structure and ultra-low density possessed great potential application in thermal insulation, adsorption and catalyst supports. Meanwhile, the solution-freeze-drying technology is simple and easy to control, providing a new strategy for the preparation of ultra-low density metal oxide aerogels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据