4.7 Article

Fusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D displacement estimation over mining areas with a prior deformation model and a generalized weighting least-squares method

期刊

JOURNAL OF GEODESY
卷 94, 期 5, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00190-020-01374-8

关键词

InSAR; 3-D deformation; Mining subsidence; Time series; Prior deformation model

资金

  1. National Key R&D Program of China [2018YFC1503603]
  2. Leading Talents Plan of Central South University [506030101]
  3. National Natural Science Foundation of China [41904005, 41474008, 41474007]
  4. Fundamental Research Funds for the Central Universities of Central South University [2018zzts685, P3214002]

向作者/读者索取更多资源

Interferometric synthetic aperture radar (InSAR) technology can be used to observe high spatial resolution one-dimensional (1-D) deformation along the line-of-sight direction from a single-track synthetic aperture radar (SAR) dataset. With the aid of multi-track InSAR data or a prior model, InSAR can be extended to infer 3-D deformation information, but the temporal resolution is generally limited. This paper presents an InSAR-based method to retrieve high spatio-temporal resolution 3-D displacements over mining areas (hereafter referred to as the MTI-based method). The core idea of the proposed method is to enhance the temporal resolution of the time-series 3-D displacement estimates by fusing multi-track InSAR observations and a prior model. Firstly, we retrieve high spatial resolution 3-D mining displacements from single-track InSAR 1-D deformation observations, with the assistance of the prior deformation model. By applying this approach to multi-track InSAR data over the same area, we obtain much denser 3-D mining displacement samples in time than those derived from a single-track InSAR dataset. Secondly, we propose a generalized weighted least-squares method to integrate the denser 3-D displacement samples, to solve the high temporal resolution 3-D mining displacements, in which the rank deficiency needs to be tackled. Finally, time-series 3-D mining displacements at the chronological dates of all the available multi-track SAR images are estimated. The Yungang coal mining area of China was selected to test the proposed method using two adjacent-track ALOS PALSAR-1 datasets. Compared with the single-track InSAR-derived results, the proposed method not only significantly improves the temporal resolution of the monitoring results by 42.6%, obtaining more detailed 3-D displacements, but it also provides important data support for understanding and modeling the distinctive kinematics of mining deformation and assessing mining-related geohazards. What is more, the core idea of the proposed method will be beneficial to high spatio-temporal resolution 3-D deformation estimation in other geophysical processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据