4.7 Article

Linear damped interfacial wave theory for an orbitally shaken upright circular cylinder

期刊

JOURNAL OF FLUID MECHANICS
卷 891, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2020.163

关键词

wave-structure interactions

向作者/读者索取更多资源

We present a new theoretical model describing gravity-capillary waves in orbitally shaken cylindrical containers. Our model can account for both one-layer free-surface and two-layer interfacial wave systems. A set of modal equations for irrotational waves is formulated that we complement with viscous damping rates to incorporate energy dissipation. This approach allows us to calculate explicit formulas for the phase shifts between wave and shaker which are practically important for the mixing efficiency in orbitally shaken bioreactors. Resonance dynamics is described using eight dimensionless numbers, revealing a variety of different effects influencing the forced wave amplitudes. As an unexpected result, the model predicts the formation of novel spiral wave patterns resulting from a damping-induced symmetry breaking mechanism. For validation, we compare theoretical amplitudes, fluid velocities and phase shifts with three different and independent experiments and, when using the slightly deviating experimental values of the resonance frequencies, find a good agreement within the theoretical limits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据