4.6 Article

Cosmological angular trispectra and non-Gaussian covariance

出版社

IOP Publishing Ltd
DOI: 10.1088/1475-7516/2020/05/044

关键词

non-gaussianity; galaxy clustering; cosmological perturbation theory; redshift surveys

资金

  1. Department of Energy (DOE) [DE-SC0020223]
  2. U.S. Department of Energy (DOE) [DE-SC0020223] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Angular cosmological correlators are infamously difficult to compute due to the highly oscillatory nature of the projection integrals. Motivated by recent development on analytic approaches to cosmological perturbation theory, in this paper we present an efficient method for computing cosmological four-point correlations in angular space, generalizing previous works on lower-point functions. This builds on the FFTLog algorithm that approximates the matter power spectrum as a sum over power-law functions, which makes certain momentum integrals analytically solvable. The computational complexity is drastically reduced for correlators in a separable form we define a suitable notion of separability for cosmological trispectra, and derive formulas for angular correlators of different separability classes. As an application of our formalism, we compute the angular galaxy trispectrum at tree level, with and without primordial non-Gaussianity. This includes effects of redshift space distortion and bias parameters up to cubic order. We also compute the non-Gaussian covariance of the angular matter power spectrum due to the connected four-point function, beyond the Limber approximation. We demonstrate that, in contrast to the standard lore, the Limber approximation can fail for the non-Gaussian covariance computation even for large multipoles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据