4.7 Article

Temperature-dependent luminescence of a phosphor mixture of Li2TiO3: Mn4+ and Y2O3: Dy3+ for dual-mode optical thermometry

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 821, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.153467

关键词

Phosphor mixture; Fluorescence intensity ratio; Lifetime; Optical thermometry

资金

  1. National Natural Science Foundation of China (NSFC) [11574298, 61635012, 11974338]
  2. National Key Research and Development Program of China [2016YFB0701001]

向作者/读者索取更多资源

Mixture of Mn4+-doped phosphor (Li2TiO3:Mn4+) and Dy3+-doped phosphor (Y2O3: Dy3+) were prepared and investigated for the application of optical thermometry. X-ray powder diffraction and luminescence spectroscopy measurements were performed on all samples to analysis their optical properties. In particular, temperature-dependent luminescence and fluorescence lifetime of the mixture sample were measured in the temperature range of 273-373 K. Further analysis showed that the mixture sample used for temperature sensing has an excellent relative sensitivity with maximum value of 4.34% K-1 at 288 K based on fluorescence intensity ratio (FIR) and 6.67% K-1 at 339 K based on fluorescence lifetime, respectively. All these investigations suggest that the mixture phosphor is very promising in dual-mode high-sensitivity optical thermometry. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Tunable up-conversion in glass-ceramics containing Ba2YF7: Ho3+/Yb3+ nanocrystals via Ce3+ doping

Wenming Wang, Xiantao Wei, Hongmei Chen, Yan Pan, Yong Li

Summary: Ba2YF7: Ho3+/Yb3+ nanocrystals embedded in transparent glass-ceramics were fabricated using the traditional melt-quenching technique. Self-crystallization occurred during the formation of precursor glasses, as confirmed by X-ray diffraction patterns. After additional heat treatment, enhanced up-conversion emission and prolonged lifetimes were observed due to increased crystallinity. The red and green emissions of Ho3+ showed tunable behavior under 980-nm excitation when different concentrations of Ce3+ ions were doped into Ba2YF7: Ho3+/Yb(3+)nanocrystals.

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING (2022)

Article Chemistry, Physical

Novel transparent Tb3+-activated Na2GdF7 glass ceramics for low-lying state thermal coupling principle

Fangfang Hu, Gong Hailin, Ghulam Abbas Ashraf, Xiong Tao, Rongfei Wei, Hai Guo, Min Yin

Summary: In this study, transparent oxy-fluoride glass ceramics (GC) were successfully fabricated and applied as host materials for optical thermometers. The Na2GdF7:xTb3+ (x = 0.02, 0.03, 0.04, 0.05, and 0.06) GC samples exhibited high transparency and were researched for their structural, micro-topography, and fluorescence spectra properties. The Na2GdF7:0.3Tb3+ GC sample showed enhanced luminescence compared to the precursor glass and demonstrated excellent performance in low-lying state thermal coupling principle.

JOURNAL OF ALLOYS AND COMPOUNDS (2022)

Article Materials Science, Ceramics

Luminescence properties of multicolor emitting La4GeO8:Tb3+, Eu3+phosphors

Fengfeng Chi, Liangliang Pan, Bin Jiang, Zhangchao Ji, Jie Cheng, Bing Wang, Xiantao Wei, Shengli Liu

Summary: Tb3+ and Eu3+ doped La4GeO8 phosphors with multicolor emission were synthesized and their photoluminescence properties were investigated. The energy transfer from Tb3+ to Eu3+ in La4GeO8 is attributed to quadrupole-quadrupole interaction. The La4GeO8:0.07Tb3+,0.01Eu3+ phosphor exhibits good thermal stability with activation energies of 0.186 eV and 0.187 eV for Tb3+ and Eu3+ ions, respectively. By adjusting the content ratio of Eu3+ to Tb3+, the La4GeO8:Tb3+,Eu3+ phosphors can achieve multicolor luminescence and tunable chromaticity. These findings suggest that La4GeO8:Tb3+,Eu3+ phosphors are promising for solid-state lighting applications.

CERAMICS INTERNATIONAL (2023)

Article Optics

Photoluminescence properties of far-red emitting Lu2CaAl4GeO12:Cr3+ garnet phosphor

Fengfeng Chi, Wenjuan Dai, Liting Qiu, Shengli Liu, Xiantao Wei, Yonghu Chen, Min Yin

Summary: In this study, a Cr3+-activated Lu2CaAl4GeO12 phosphor with far-red emitting was prepared, and its thermally stable luminescence was observed.

JOURNAL OF LUMINESCENCE (2022)

Article Chemistry, Inorganic & Nuclear

Investigation of multicolor emitting Cs3GdGe3O9:Bi3+,Eu3+ phosphors via energy transfer for WLEDs

Fengfeng Chi, Zhangchao Ji, Qian Liu, Bin Jiang, Bing Wang, Jie Cheng, Bin Li, Shengli Liu, Xiantao Wei

DALTON TRANSACTIONS (2023)

Article Chemistry, Physical

Novel far-red emitting phosphor Mn4+-activated BaLaLiWO6 with excellent performance for indoor plant cultivation of light-emitting diodes

Liang Li, Qianwen Cao, Jing Xie, Wenming Wang, Jiajia Wang, Yan Pan, Xiantao Wei, Yong Li

Summary: Researchers successfully prepared a far-red emitting phosphor doped with Mn4+ ions, which can be efficiently excited and emit intense far-red light. The crystalline properties and luminescence performance were studied in detail, and the crystalline field effect and concentration quenching mechanism of Mn4+ ions in the matrix were explored. The phosphor exhibited high internal quantum efficiency, color purity, and activation energy, making it suitable for the preparation of LED devices for plant cultivation.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Optics

Synthesis and optical properties of far-red dual perovskite Sr2InTaO6: Mn4+phosphors for indoor plant lighting LED

Qianwen Cao, Liang Li, Yubei Wang, Wenming Wang, Hongmei Chen, Yan Pan, Xiantao Wei, Yong Li

Summary: This study demonstrates the use of Sr2InTaO6: Mn4+ phosphor for far-red light emission in LEDs for plant cultivation.

JOURNAL OF LUMINESCENCE (2022)

Article Materials Science, Multidisciplinary

Upconversion luminescence and effect of pump power on optical thermometry of Yb3+/Er3+co-doped YOF self-crystallization glass ceramics

Wenming Wang, Liang Li, Hongmei Chen, Xiantao Wei, Juanying Jia, Yan Pan, Yong Li

Summary: In this study, Yb3+/Er3+ co-doped YOF glass ceramics were prepared and their luminescence and temperature sensing properties were investigated under 980 nm excitation. The fluorescence intensity ratio (FIR) of the thermal couple energy level (TCEL) and non-thermal couple energy level (NTCEL) was used to evaluate the temperature sensing sensitivity. The increase in pump power resulted in a decrease in relative sensitivity (SR) due to the thermal effect and increased rate of energy transfer and non-radiative relaxation process between dopants and host. The maximum relative sensitivity of this sample reached 1.59 x 10-2 K-1 at 310 K with a pump power of 0.2 W, indicating the prospective application of this glass ceramic in optical thermometry.

OPTICAL MATERIALS (2023)

Article Chemistry, Physical

Study on luminescence properties of Bi3+doped Ba2YAlO5:A wide-band yellow emitting phosphor with excellent thermal stability

Zhicheng Liao, Liting Qiu, Xiantao Wei, Yonghu Chen

Summary: A novel heat-quenching resistant phosphor Ba2YAlO5 doped with Bi3+ was successfully synthesized using the traditional high temperature solid-state method. The crystal structure and luminescence properties were characterized by XRD, SEM, DR spectra, and PL spectra. The phosphor exhibited a broad-band yellow light with a peak at 571 nm and a FWHM of 125 nm under 324 nm excitation. The integrated emission intensity at 560 K was still close to that at room temperature, indicating its excellent thermal stability. Ba2YAlO5: Bi3+ also showed yellowish white light with high color temperature, making it a promising fluorescent powder for high-power devices.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Chemistry, Inorganic & Nuclear

Enhancing the luminescence performance of an LED-pumped Mn4+-activated highly efficient double perovskite phosphor with A-site defects via local lattice tuning

Liang Li, Qianwen Cao, Jing Xie, Wenming Wang, Yubei Wang, Hongmei Chen, Zhongyuan Li, Yan Pan, Xiantao Wei, Yong Li

Summary: Altering the local symmetry of an activator by lattice tuning is an effective strategy to optimize the luminescence performance of phosphors. In this study, a novel Mn4+-activated double perovskite phosphor LMTO with A-site defects was successfully prepared. By increasing the randomness of the A-site and the distortion index of the [MnO6] octahedron, the luminescence performance of the phosphor was further enhanced.

DALTON TRANSACTIONS (2022)

Article Chemistry, Physical

Design of highly sensitive ratiometric thermometry with time-gated technique

Shaoshuai Zhou, Wei Wang, Xiantao Wei, Min Yin

Summary: By employing a time-gated ratiometric thermometry technique, the temperature was measured based on the luminescence intensity ratio. Sm3+ doped material was used as the temperature responsive signal and reference signal. The experimental results showed high relative sensitivity and good temperature measurement performance within the investigated temperature range.

JOURNAL OF ALLOYS AND COMPOUNDS (2022)

Article Materials Science, Multidisciplinary

Defect levels of 3dn transition-metal series in wide-gap oxide and fluoride insulators: A first-principles study

Weiguo Jing, Mingzhe Liu, Xiantao Wei, Chong-Geng Ma, Min Yin, Chang-Kui Duan

Summary: In this study, the defect levels of transition metal ions in various insulating materials were investigated using density functional theory. The results show that the proposed calculation scheme is effective in predicting the valence states and defect levels of transition metal ions, which can aid in the design and optimization of optical materials.

PHYSICAL REVIEW B (2022)

Article Materials Science, Multidisciplinary

Understanding photoluminescence of Cs2ZrCl6 doped with post-transition-metal ions using first-principles calculations

Mingzhe Liu, Chang-Kui Duan, Peter A. Tanner, Chong-Geng Ma, Xiantao Wei, Min Yin

Summary: This study reveals the mechanisms of photoluminescence in doped lead-free halide perovskites through theoretical calculations, showing that the main photoluminescence can be attributed to highly localized self-trapped excitons. The research may inspire further understanding of the photoluminescence mechanisms in other materials.

PHYSICAL REVIEW B (2022)

Article Chemistry, Inorganic & Nuclear

Cr3+-Doped InTaO4 phosphor for multi-mode temperature sensing with high sensitivity in a physiological temperature range

Liting Qiu, Peng Wang, Jiashan Mao, Zhicheng Liao, Fengfeng Chi, Yonghu Chen, Xiantao Wei, Min Yin

Summary: With the increasing demand for non-contact temperature sensing, the development of an excellent optical thermometer has become more compelling. In this study, a Cr3+-doped InTaO4 phosphor was prepared and investigated for its temperature-dependent fluorescence intensity and fluorescence lifetime, achieving high-sensitivity temperature sensing in two different modes. Additionally, a time-resolved technique was also presented, which showed improved temperature sensitivity and resolution. The results demonstrate the promising potential of InTaO4:Cr3+ phosphor in multi-mode high-sensitivity optical thermometry and temperature imaging.

INORGANIC CHEMISTRY FRONTIERS (2022)

Article Chemistry, Physical

Magnetic/optical assessments of RFeO3 (R=La, Pr, Nd, and Sm) ceramics: An experimental and theoretical discernment

J. Zamora, T. Bautista, N. S. Portillo-Velez, A. Reyes-Montero, H. Pfeiffer, F. Sanchez-Ochoa, H. A. Lara-Garcia

Summary: Experimental and DFT studies were conducted on the structural, magnetic, and optical properties of RFeO3 perovskites. The perovskites exhibited an orthorhombic crystal structure and weak ferromagnetic behavior. They were confirmed to be semiconductors with a bandgap of approximately 2.1 eV.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

The effect of Ti-based surface layer on AlSi thin film as a high-performance anode for the lithium-ion battery

Xianxiang Lv, Jing Jin, Weiguang Yang

Summary: By depositing TiN and TiO2 surface layers on AlSi films, the electrochemical performance of silicon-based anodes can be significantly improved, suppressing volume expansion and promoting the formation of a stable SEI layer.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Bifunctional phosphate-modulated Cu2O/CeO2 redox heterojunction: A promising approach for proficient CO2 reduction

Sharafat Ali, Haider Ali, Syedul Hasnain Bakhtiar, Sajjad Ali, Muhammad Zahid, Ahmed Ismail, Pir Muhammad Ismail, Amir Zada, Imran Khan, Huahai Shen, Rizwan Ullah, Habib Khan, Mohamed Bououdina, Xiaoqiang Wu, Fazal Raziq, Liang Qiao

Summary: The construction and optimization of redox-heterojunctions using a bifunctional phosphate as an electron-bridge demonstrated significant improvements in photo catalytic activity, including enhanced dispersion, reduced interfacial migration resistance, and increased abundance of active-sites.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Engineering heterogeneous synergistic interface and multifunctional cobalt-iron site enabling high-performance oxygen evolution reaction

Ren-Ni Luan, Na Xu, Chao-Ran Li, Zhi-Jie Zhang, Yu-Sheng Zhang, Jun Nan, Shu-Tao Wang, Yong-Ming Chai, Bin Dong

Summary: Extensive research has revealed that oxygen evolution reaction (OER) in alkaline conditions involves dynamic surface restructuring. The development and design of sulfide/oxide pre-catalysts can reasonably adjust the composition and structure after surface reconstruction, which is crucial for OER. This study utilized a simple two-step hydrothermal method to achieve in situ S leaching and doping, inducing the composition change and structure reconstruction of CoFe oxides. The transformed FeOOH and CoOOH exhibited excellent OER activity and could be easily mass-produced using low-cost iron based materials and simple methods.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Highly efficiency blue emissive from Bi3+ions in zero-dimensional organic bismuth halide for white LED applications

Jun'an Lai, Daofu Wu, Peng He, Kang An, Yijia Wang, Peng Feng, WeiWei Chen, Zixian Wang, Linfeng Guo, Xiaosheng Tang

Summary: Zero-dimensional organic-inorganic metal halides (OMHs) are gaining attention in the fabrication of light-emitting diodes due to their broad emission band and high photoluminescence quantum yield. This work synthesized a zero-dimensional organic tetraphenylphosphonium bismuth chloride (TBC) that showed efficient blue light emission, with the emission mechanism attributed to the transition of Bi3+ ions. White light-emitting diodes (WLEDs) were fabricated using TBC, along with green-emitting and red-emitting single crystals, achieving single-component white emissions. These findings demonstrate the different emission mechanism of ns2 ions-based OMHs and highlight the potential of bismuth-based OMHs in WLEDs applications.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Study on the wear resistance and mechanism of AlCrCuFe2NiTix high-entropy surfacing alloys

Xuewei Liang, Yunhai Su, Taisen Yang, Zhiyong Dai, Yingdi Wang, Xingping Yong

Summary: The revolutionary design concept of high-entropy alloys has brought new opportunities and challenges to the development of advanced metal materials. In this work, AlCrCuFe2NiTix high-entropy flux cored wires were prepared by combining the design idea of a high-entropy alloy with the characteristics of flux cored wire. AlCr-CuFe2NiTix high-entropy surfacing alloys were prepared using gas metal arc welding technology. The wear properties of the alloys were analyzed, and the phase composition, microstructure, strengthening mechanism, and wear mechanism were discussed. The results show that the alloys exhibit a dendritic microstructure with BCC/B2 + FCC phases. Increasing Ti content leads to the precipitation of Laves phase. The alloys show improved microhardness and wear resistance due to the precipitation of coherent B2 and Laves phases. However, excessive Ti addition results in the increase of Laves phase and reduced wear resistance of the alloys.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Facile synthesis of ternary g-C3N4/polyacrylic acid/CoFe2O4 nanocomposites for solar light irradiated photocatalytic and supercapacitor applications

M. Vadivel, M. Senthil Pandian, P. Ramasamy, Qiang Jing, Bo Liu

Summary: This work presents the enhanced photocatalytic and electrochemical performance of g-C3N4 assisted PAA on CoFe2O4 ternary nanocomposites. The incorporation of PAA and g-C3N4 improves the separation efficiency of photogenerated charge carriers, resulting in superior photocatalytic degradation and high specific capacitance values.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Investigation on bio-synthesized Ni- and Al-doped cobalt ferrite using lemon juice as eco-fuel

Vibhu T. Sivanandan, Ramany Revathy, Arun S. Prasad

Summary: In this study, pure and doped cobalt ferrite nanoparticles were prepared using the sol-gel auto-combustion method with the aid of lemon juice as eco-fuel. The crystal structure, lattice parameter, crystallite size, microstrain, optical parameters, and room temperature magnetic properties of the samples were analyzed. The effect of doping on the magnetic properties was also investigated.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Cu, Ni and Ag ions assisted preparation of nonpolar preferential oriented ZnO films with controlled morphology and optical properties

Qing Guo, Bowen Zhang, Benzhe Sun, Yang Qi

Summary: This study prepared ZnO films with various nonpolar preferred orientations using conventional chemical bath deposition method and characterized their growth process and mechanism. It was found that the type and concentration of nitrate could control the preferred orientation and surface roughness of ZnO films. Additionally, ZnO films with different preferred orientations exhibited different optical properties.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Characterization of magnetic FeCo particles with controlled bimetallic composition

Chong Zhang, Yan Liu, Zhaoyan Wang, Hang Yang

Summary: In this study, six bimetallic FeCo particles were synthesized via the hydrothermal method at different Fe:Co ratios. The Fe:Co ratio not only modulates the composition of the particles but also influences their structure and magnetic properties. The FeCo alloys showed a transformation from an Fe-based structure to a Co-based structure with increasing Co content. The Fe:Co ratio of 1:1 and 3:1 resulted in particles with the highest and lowest saturation magnetization, respectively.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Micro-alloying effects of Ta and B on nano-oxides and grain boundaries in 13CrWTi-ODS ferritic alloys

Jianning Zhang, Jing Li, Yiren Wang, Xiaodong Mao, Yong Jiang

Summary: We conducted a study on the formation of ultra-fine Y-Ti-Ta-O nano-oxides in Ta+B micro-alloyed 13CrWTi-ODS alloys using electron microscopy and first-principles calculations. The Y-Ti-Ta-O nano-oxides were found to be mainly Y2(Ti,Ta)2O7, with an average size of 7 nm and a number density of 6.8 x 1023 m-3. Excess boron was found to enhance the adhesion of some low-sigma grain boundaries but weaken the Fe/Y2Ti2O7 interface, while excess tantalum enhanced the Fe/Y2Ti2O7 interface but caused serious degradation of grain boundaries.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Nitrogen-doped reduced graphene oxide/black phosphorus quantum dot composites for electrocatalytic treatment of choroidal melanoma

Yirong Fang, Pei Cheng, Hang Yuan, Hao Zhao, Lishu Zhang

Summary: A new composite system of nitrogen-doped reduced graphene oxide and black phosphorus quantum dots has been developed for tumor therapy, showing improved electrochemical properties and stability. The system generates hydrogen peroxide and hydroxyl radical to effectively kill tumor cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Significantly enhanced magnetism in cobalt ferrite by manganese and terbium co-doping

Xiufang Qin, Yuanli Ma, Hui Zhang, Ting Zhang, Fang Wang, Xiaohong Xu

Summary: The structure and magnetism of cobalt ferrites after Mn2+-Tb3+ co-doping were studied. Co-doped samples exhibited cubic spinel structure and spherical shape of ferrite nanoparticles. The redistribution of Co2+ and Fe3+ ions between octahedral and tetrahedral sites was observed due to Mn2+-Tb3+ co-doping. The coercivity and magnetization saturation of co-doped samples were significantly improved, leading to a maximum energy product that is 190% higher than that of the un-doped sample.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

High-performance low-temperature solid oxide fuel cell with nanostructured lanthanum strontium cobaltite/yttria-stabilized zirconia cathode via advanced co-sputtering

Ho Yeon Lee, Wonjong Yu, Yoon Ho Lee

Summary: Recently, there has been an increasing interest in developing ultra-fine nanostructured electrodes with extensive reaction areas to enhance the performance and low-temperature operation of solid oxide fuel cells. The use of a refined approach involving co-sputtering metal alloys and oxide targets has demonstrated the feasibility of nano-columnar structures in perovskite-based electrodes, expanding the temperature range of thin film electrodes. This study systematically examines the effects of chamber pressure control in the co-sputtering process and identifies the intricate relationship between sputtering pressure and film structure. By fine-tuning the columnar growth in the electrode, significant improvements in performance and thermo-mechanical properties were achieved, resulting in high-performance all-sputtered solid oxide fuel cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Amorphous quaternary alloy nanoplates for efficient catalysis of hydrogen evolution reaction

Qianyun Bai, Xiaoxiao Yan, Da Liu, Kang Xiang, Xin Tu, Yanhui Guo, Renbing Wu

Summary: This study proposes a simple method to develop a non-precious transition metal-based electrocatalyst with high catalytic activity and robustness for the hydrogen evolution reaction. The as-synthesized electrode exhibits a low overpotential and high current density, indicating its potential in energy conversion.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)