4.4 Article

Revisiting the generalized pseudospectral method: Radial expectation values, fine structure, and hyperfine splitting of confined atom

期刊

出版社

WILEY
DOI: 10.1002/qua.26245

关键词

confined atom; fine structure; generalized pseudospectral method; hyperfine splitting; radial expectation value

向作者/读者索取更多资源

This paper revisits the generalized pseudospectral (GPS) method on the calculation of various radial expectation values of atomic systems, especially on the spatially confined hydrogen atom and harmonic oscillator. As one of the collocation methods based on global functions, the powerfulness and robustness of the GPS method has been well established in solving the radial Schrodinger equation with high accuracy. However, in our recent work, it was found that the previous calculations based on the GPS method for the radial expectation values of confined systems show significant discrepancies with other theoretical methods. In this work we have tackled such a problem by tracing its source to the GPS method and found that the method itself may not be able to obtain the system wave function at the origin. Combined with an extrapolation method developed here, the GPS method can fully reproduce the radial quantities obtained by other theoretical methods, but with more flexibility, efficiency, and accuracy. We apply the GPS-extrapolation method to investigate the relatievistic fine structure and hyperfine splitting of confined hydrogen atom in s-wave states where the zero-point wave function dominates. Good agreement with previous predictions is obtained for confined hydrogen in low-lying states, and benchmark results are obtained for high-lying excited states. The perturbation treatment of the fine and hyperfine interactions is validated in the confining environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据