4.7 Article

Efficient optimization of high-dose formulation of novel lyophilizates for dry powder inhalation by the combination of response surface methodology and time-of-flight measurement

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2020.119255

关键词

Dry powder inhalation; DPI; Freeze drying; Lyophilization; Inhalation; Pulmonary administration; Response surface

向作者/读者索取更多资源

Inhalation of proteins/peptides has recently received attention as various biopharmaceuticals have emerged on the market. Novel lyophilisates for dry powder inhalation (LDPIs), which are aerosolized by air impact, have been reported and LDPIs are considered an attractive option for the pulmonary administration of biopharmaceuticals. However, desirable disintegration and aerosolization properties have been unavailable in high-dose formulations, which has been a critical issue. This study aimed to investigate high-dose LDPIs and their optimization. In the present study, lysozyme (Lysoz) was used as a stable model protein and formulated with various amino acids. Furthermore, response surface methodology (RSM) and time-of-flight measurement were applied for efficient optimization. Superior disintegration and aerosolization properties were confirmed in the LDPIs with phenylalanine (Phe) and leucine (Leu). RSM results revealed that 0.5 mg/vial of Phe and 1.0 mg/vial of Leu are the optimal quantities for high-dose formulation. Based on these optimum quantities, high-dose LDPI formulations were prepared and the maximum formulable quantity of Lysoz with acceptable inhalation performance was confirmed to be 3.0 mg/vial. The results suggest that LDPI can cover the milligram-order pulmonary administration of proteins/peptides. LDPIs are expected to have biopharmaceutical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据