4.7 Review

d-glutamate and Gut Microbiota in Alzheimer's Disease

期刊

出版社

MDPI
DOI: 10.3390/ijms21082676

关键词

Glutamate; gut microbiota; dementia; brain-gut-microbiota axis; Alzheimer's disease; N-methyl-d-aspartate glutamate receptor

资金

  1. China Medical University Hospital [DMR-108-BC-2]
  2. Chang Gung Memorial Hospital [CMRPG8G1391]
  3. National Health Research Institutes [NHRI-EX108-10731NI, NHRI-EX108-10816NC]
  4. Ministry of Science and Technology [MOST 107-2632-B-039-001, MOST 107-2628-B-182A-002, MOST 108-2314-B-039-002, MOST 108-2628-B-182A-002]

向作者/读者索取更多资源

Background: An increasing number of studies have shown that the brain-gut-microbiota axis may significantly contribute to Alzheimer's disease (AD) pathogenesis. Moreover, impaired memory and learning involve the dysfunction neurotransmission of glutamate, the agonist of the N-methyl-d-aspartate receptor and a major excitatory neurotransmitter in the brain. This systematic review aimed to summarize the current cutting-edge research on the gut microbiota and glutamate alterations associated with dementia. Methods: PubMed, the Cochrane Collaboration Central Register of Controlled Clinical Trials, and Cochrane Systematic Reviews were reviewed for all studies on glutamate and gut microbiota in dementia published up until Feb 2020. Results: Several pilot studies have reported alterations of gut microbiota and metabolites in AD patients and other forms of dementia. Gut microbiota including Bacteroides vulgatus and Campylobacter jejuni affect glutamate metabolism and decrease the glutamate metabolite 2-keto-glutaramic acid. Meanwhile, gut bacteria with glutamate racemase including Corynebacterium glutamicum, Brevibacterium lactofermentum, and Brevibacterium avium can convert l-glutamate to d-glutamate. N-methyl-d-aspartate glutamate receptor (NMDAR)-enhancing agents have been found to potentially improve cognition in AD or Parkinson's disease patients. These findings suggest that d-glutamate (d-form glutamate) metabolized by the gut bacteria may influence the glutamate NMDAR and cognitive function in dementia patients. Conclusions: Gut microbiota and glutamate are potential novel interventions to be developed for dementia. Exploring comprehensive cognitive functions in animal and human trials with glutamate-related NMDAR enhancers are warranted to examine d-glutamate signaling efficacy in gut microbiota in patients with AD and other neurodegenerative dementias.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据