4.7 Article

Polybenzimidazole composite membranes containing imidazole functionalized graphene oxide showing high proton conductivity and improved physicochemical properties

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 46, 期 22, 页码 12254-12262

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.02.193

关键词

Polymer composite; Proton exchange membrane; Polybenzimidazole; Graphene oxide; HT-PEMFC

资金

  1. National Research Foundation of Korea - Korean Government [NRF-2015M1A2A2056729, NRF-2019M3E6A1064797]
  2. National Research Foundation of Korea [2019M3E6A1064797, 2015M1A2A2056729, 4120200413705] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

By using ImGO as a filler, the PBI composite membrane shows improved mechanical properties and proton conductivity compared to traditional filler GO. The compatibility of ImGO with PBI matrix is better, resulting in better overall performance of the membrane.
Polymer composite membranes are fabricated using poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI) as a polymer matrix and imidazole functionalized graphene oxide (ImGO) as a filler material for high temperature proton exchange membrane fuel cell applications. ImGO is prepared by the reaction of o-phenylenediamine with graphene oxide (GO). The compatibility of ImGO with PBI matrix is found to be better than that of GO, and as a result PBI composite membrane having ImGO exhibits improved physicochemical properties and larger proton conductivity compared with pure PBI and PBI composite membrane having GO. For example, PBI composite membrane having 0.5 wt% of ImGO shows enhanced tensile strength (219.2 MPa) with minimal decrease of elongation at break value (28.8%) compared with PBI composite membrane having 0.5 wt% of GO (215.5 MPa, 15.4%) and pure PBI membrane without any filler (181.0 MPa, 34.8%). The proton conductivity of this membrane, at 150 degrees C under anhydrous condition, is 77.52 mS cm(-1). (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据