4.7 Article

PC-SAFT/UNIQUAC model assesses formation condition of methane hydrate in the presence of imidazolium-based ionic liquid systems

期刊

FUEL
卷 266, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2019.116757

关键词

Hydrate dissociation temperature; Methane; Imidazolium-based ionic liquids; PC-SAFT equation of state; UNIQUAC model

资金

  1. Memorial University (NL, Canada)
  2. Natural Sciences and Engineering Research Council of Canada (NSERC)
  3. Equinor Canada
  4. InnovateNL

向作者/读者索取更多资源

One of the major problems in flow assurance, especially in the case of deep subsea pipelines, is the accumulation of gas hydrates that leads to significant issues such as pipe plugging and cracking. Utilization of thermodynamic inhibitors is an effective method to prevent hydrate formation in pipelines. Recently, ionic liquids (ILs) have been recognized as new hydrate inhibitors due to their strong electrostatic charges, which form hydrogen bonds with water molecules. In this work, the capability of the PC-SAFT/UNIQUAC model combined with the van der Waals-Platteeuw theory is assessed for estimation of the methane hydrate dissociation temperatures in the presence of various IL solutions. Five pure-component parameters of PC-SAFT EOS for ILs are fitted by using experimental data of liquid density. Furthermore, vapour-liquid and hydrate equilibria experimental data are employed to adjust the binary interaction parameters of the PC-SAFT EOS (k(ij)) and the UNIQUAC model (u(ij)), respectively. Methane hydrate dissociation temperatures are successfully forecasted by using the proposed model for ten (10) IL systems with different concentrations in which the overall average absolute deviation for temperature (AADT %) of the model is lower than 1.5%. The results clearly demonstrate that the developed thermodynamic model is capable of precisely obtaining the methane hydrate dissociation temperatures in the presence of IL solutions, though, for [EMIM] [Cl] solutions with a concentration of more than 30 wt%, the model overestimates the methane hydrate conditions. The proposed thermodynamic modeling strategy can assist to screen suitable IL solutions with an optimal composition for hydrate formation inhibition in terms of technical, economic, and environmental prospectives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据