4.2 Article

Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 40, 期 5, 页码 1175-1185

出版社

KARGER
DOI: 10.1159/000453171

关键词

Cannabinoid 2 receptor; Diabetes; Insulin secretion; Inflammation; Lipolytic

资金

  1. National Natural Science Foundation of China [31300732]
  2. Peking Union Medical College Youth Fund & the Fundamental Research Funds for the Central Universities [3332016102]
  3. Outstanding Young Faculty Award of Peking Union Medical College

向作者/读者索取更多资源

Background/Aims: The endocannabinoid signalling (ECS) system has been known to regulate glucose homeostasis. Previous studies have suggested that the cannabinoid 2 (CB2) receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance. Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB72 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD)/streptozotocin (STZ)-induced mice. Methods: Diabetes was induced in male ICR mice by HFD/STZ and exposed to a CB2 receptor agonist, SER601, for 2- or 4-weeks via subcutaneous implantation of osmotic minipumps. Glucose and insulin tolerance tests were performed at the end of treatment. Islets were isolated for assessment of beta-cell function. Pancreases and skeletal muscles were also obtained for histological analyses. Results: Despite a lack of impact on glucose tolerance, substantial improvement on insulin sensitivity was observed in SER601-treated mice, which could partly be attributed to improved islet beta-cell function, shown as increased glucose-induced insulin secretion and insulin content. No changes on islet macrophage infiltration or skeletal muscle fat deposition were detectable from SER601-treated mice. However, a major decrease in body weight was recorded at the end of 4-week SER601 exposure, accompanied by a lack of epididymal adipose mass in SER601-treated mice. Conclusion: Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity. Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes. (C) 2016 The Author(s) Published by S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据