4.8 Article

Surveying Manganese Oxides as Electrode Materials for Harnessing Salinity Gradient Energy

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 54, 期 9, 页码 5746-5754

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c00096

关键词

-

资金

  1. National Science Foundation [CBET-1603635]
  2. Pennsylvania State University
  3. Swiss National Science Foundation [200020_162825]
  4. Swiss National Science Foundation (SNF) [200020_162825] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The potential energy contained in the controlled mixing of waters with different salt concentrations (i.e., salinity gradient energy) can theoretically provide a substantial fraction of the global electrical demand. One method for generating electricity from salinity gradients is to use electrode-based reactions in electrochemical cells. Here, we examined the relationship between the electrical power densities generated from synthetic NaCl solutions and the crystal structures and morphologies of manganese oxides, which undergo redox reactions coupled to sodium ion uptake and release. Our aim was to make progress toward developing rational frameworks for selecting electrode materials used to harvest salinity gradient energy. We synthesized 12 manganese oxides having different crystal structures and particle sizes and measured the power densities they produced in a concentration flow cell fed with 0.02 and 0.5 M NaCl solutions. Power production varied considerably among the oxides, ranging from no power produced (beta-MnO2) to 1.18 +/- 0.01 W/m(2) (sodium manganese oxide). Power production correlated with the materials' specific capacities, suggesting that cyclic voltammetry may be a simple method to screen possible materials. The highest power densities were achieved with manganese oxides capable of intercalating sodium ions when their potentials were prepoised prior to power production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据