4.3 Article

Contribution of injured posterior ligamentous complex and intervertebral disc on post-traumatic instability at the cervical spine

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/10255842.2020.1767776

关键词

Spine; disco-ligamentous structures; post-trauma; injury biomechanics; finite element modeling

资金

  1. Canada research chair in biomechanics of head and spine injuries [231815]
  2. foundation J.A. De Seve
  3. Fonds de recherche du Quebec [271503]

向作者/读者索取更多资源

Posterior ligamentous complex (PLC) and intervertebral disc (IVD) injuries are common cervical spine flexion-distraction injuries, but the residual stability following their disruption is misknown. The objective of this study was to evaluate the effect of PLC and IVD disruption on post-traumatic cervical spine stability under low flexion moment (2 Nm) using a finite element (FE) model of C2-T1. The PLC was removed first and a progressive disc rupture (one third, two thirds and complete rupture) was modeled to simulate IVD disruption at C2-C3, C4-C5 and C6-C7. At each step, a non-traumatic flexion moment was applied and the change in stability was evaluated. PLC removal had little impact at C2-C3 but increased local range of motion (ROM) at the injured level by 77.2% and 190.7% at C4-C5 and C6-C7, respectively. Complete IVD rupture had the largest impact on C2-C3, increasing C2-C3 ROM by 181% and creating a large antero-posterior displacement of the C2-C3 segment. The FE analysis showed PLC and disc injuries create spinal instability. However, the PLC played a bigger role in the stability of the middle and lower cervical spine while the IVD was more important at the upper cervical spine. Stabilization appears important when managing patients with soft tissue injuries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据