4.5 Article

Effects of network topologies on stochastic resonance in feedforward neural network

期刊

COGNITIVE NEURODYNAMICS
卷 14, 期 3, 页码 399-409

出版社

SPRINGER
DOI: 10.1007/s11571-020-09576-8

关键词

Topology; Degree distribution; Feedforward network; Stochastic resonance

向作者/读者索取更多资源

The effects of network topologies on signal propagation are studied in noisy feedforward neural network in detail, where the network topologies are modulated by changing both the in-degree and out-degree distributions of FFNs as identical, uniform and exponential respectively. Stochastic resonance appeared in three FFNs when the same external stimuli and noise are applied to the three different network topologies. It is found that optimal noise intensity decreases with the increase of network's layer index. Meanwhile, the Q index of FFN with identical distribution is higher than that of the other two FFNs, indicating that the synchronization between the neuronal firing activities and the external stimuli is more obvious in FFN with identical distribution. The optimal parameter regions for the time cycle of external stimuli and the noise intensity are found for three FFNs, in which the resonance is more easily induced when the parameters of stimuli are set in this region. Furthermore, the relationship between the in-degree, the average membrane potential and the resonance performance is studied at the neuronal level, where it is found that both the average membrane potentials and the Q indexes of neurons in FFN with identical degree distribution is more consistent with each other than that of the other two FFNs due to their network topologies. In summary, the simulations here indicate that the network topologies play essential roles in affecting the signal propagation of FFNs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据