4.7 Article

Effect of Brassica napus cultivar on cellulosic ethanol yield

期刊

BIOTECHNOLOGY FOR BIOFUELS
卷 8, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s13068-015-0278-z

关键词

Bioethanol; Biomass saccharification; Crop cultivars; Cultivar variation; Dicot; Dicotyledonous; Oilseed rape; Fermentation; Pretreatment; Rapeseed straw

资金

  1. Biotechnology and Biological Sciences Research Council (BBSRC) via the Integrated Biorefining Research and Technology Club (IBTI Club) [BB/H004351/1]
  2. Institute Strategic Programme 'Food and Health' [BB/J004545/1]
  3. BBSRC [BB/H00436X/1, BB/H004351/1, BBS/E/F/00044476] Funding Source: UKRI
  4. Biotechnology and Biological Sciences Research Council [BB/H00436X/1, BBS/E/F/00044476, BB/H004351/1, 982612] Funding Source: researchfish

向作者/读者索取更多资源

Background: Intraspecific variations in biomass composition are likely to influence their suitability for biorefining. This may be particularly important in species such as Brassica napus, which contain many different crop types bred for different purposes. Here, straw derived from 17 B. napus cultivars, of varying crop types, were steam exploded, saccharified and fermented to establish differences in biomass composition relevant to cellulosic ethanol production. Results: Despite being grown and processed in the same manner, straw from the various cultivars produced different saccharification and fermentation yields after processing. Fermentation inhibitor abundances released by steam explosion also varied between genotypes. Cultivars with glucan-rich straw did not necessarily produce higher saccharification or ethanol yields after processing. Instead, the compositions of non-cellulosic components were more reliable indicators of substrate quality. The abundance of pectins and arabinogalactans had the greatest influence on saccharification efficiency between straw genotypes. Conclusions: In dicotyledonous species, such as B. napus, variations in the abundance of pectins between crop cultivars are likely to influence processing efficiency for bioethanol production. Knowledge of these genotypic variants provides targets for plant breeding and could aid in the development of improved cellulase cocktails.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据