4.7 Article

Xpp1 regulates the expression of xylanases, but not of cellulases in Trichoderma reesei

期刊

BIOTECHNOLOGY FOR BIOFUELS
卷 8, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s13068-015-0298-8

关键词

Trichoderma reesei; Xylanases; Cellulases; Gene regulation; Transcription factor; Cellulosic ethanol

资金

  1. Austrian Science Fund (FWF) [P24851, V232]
  2. doctoral program (AB-Tec) of Vienna University of Technology
  3. Austrian Science Fund (FWF) [P 24851, V 232] Funding Source: researchfish
  4. Austrian Science Fund (FWF) [P24851, V232] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

Background: The ascomycete Trichoderma reesei is industrially used for the production of cellulases. During the production process xylanases are co-secreted, which uses energy and nutrients. Cellulases and xylanases share the same main regulators, which makes a knowledge-based strain design difficult. However, previously a cis-element in the promoter of the main xylanase-encoding gene was identified as binding site for a putative repressor. Subsequently, three candidate repressors were identified in a pull-down approach. The expression of the most promising candidate, Xpp1 (Xylanase promoter-binding protein 1), was reported to be up-regulated on the repressing carbon source D-glucose and to bind the cis-element in vitro. Results: In this study, Xpp1 was deleted and over-expressed in T. reesei. An in vivo DNA-footprint assay indicated that Xpp1 binds a palindromic sequence in the xyn2 promoter. Comparison of the deletion, the over-expression, and the parent strain demonstrated that Xpp1 regulates gene expression of xylanolytic enzymes at later cultivation stages. Xpp1 expression was found to be up-regulated, additionally to D-glucose, by high D-xylose availability. These findings together with the observed xyn2 transcript levels during growth on xylan suggest that Xpp1 is the mediator of a feedback mechanism. Notably, Xpp1 has neither influence on the d-xylose metabolism nor on the expression of cellulases. Conclusions: Xpp1 as regulator acting on the expression of xylanases, but not cellulases, is a highly promising candidate for knowledge-based strain design to improve the cellulases-to-xylanases ratio during industrial cellulase production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据