4.7 Article

Zn-MoS2 nanocatalysts anchored in porous membrane for accelerated catalytic conversion of water contaminants

期刊

CHEMICAL ENGINEERING JOURNAL
卷 398, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.125455

关键词

Molybdenum disulfide; PVDF membrane; Hexavalent chromium; Formic acid; Interfacial effect

资金

  1. National Natural Science Foundation of China [21876039]
  2. Anhui Provincial Natural Science Foundation [1708085 MB41]
  3. China Postdoctoral Science Foundation [2015 M570547, 2016 T90585]
  4. Australian Research Council [DP190103548]

向作者/读者索取更多资源

A series of Zn-MoS2 heterostructures were fabricated via a thermal-treatment method, and then anchored in polyvinylidene fluoride (PVDF) to yield novel catalytic membranes (Zn-MoS2@PVDF) by the phase inversion technique for enabling Cr-VI reduction. The SEM image showed that ZnS nanoparticles homogeneously coated on the MoS2 surface assembled in flower-like agglomerations. Zn-MoS2@PVDF exhibited unprecedented activity of Cr-VI reduction using formic acid (FA) as the reductant, with a high rate constant (k = 0.033 min(-1)) and low activation energy (Ea = 38.8 kJ mol(-1)). Cr-VI reduction rates effectively boosted with increasing FA dosages (0.234-1.170 M) and temperatures (15-55 degrees C), but declined with the increase of Cr-VI concentrations (5-25 mg/L), solution pHs (2.03-5.11) and inorganic salts. The excellent performance of Zn-MoS2@PVDF originated from the synergistic effect of the unique composition and electronic structure of the membranes. The strong electronic interactions of ZnS and MoS2 made an insignificant contribution to generate intermediate H-ads* and released molecular hydrogen. Rich porosity of PVDF membranes might not only afford a uniform dispersion of the Zn-MoS2 NPs, but also decrease mass transport resistance and provide an enlarged catalytic surface area. These outstanding characteristics indicate the potential applicability of Zn-MoS2@PVDF membranes for the remediation of heavy metal pollution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

van der Waals type II carbon nitride homojunctions for visible light photocatalytic hydrogen evolution

Xiaojie Li, Panpan Zhang, Huayang Zhang, Wenjie Tian, Yangyang Yang, Kunsheng Hu, Dechao Chen, Qin Li, Xiaoguang Duan, Hongqi Sun, Shaobin Wang

Summary: Photocatalytic hydrogen evolution reaction (PC-HER) provides a solution to energy crisis and environmental pollution. The g-C3N4-based van der Waals homojunctions exhibit outstanding PC-HER rates due to the cooperative effects of various factors, such as shortened bandgap, enlarged specific surface area, matched type II energy band structure, and specific vdW structures.

NANO RESEARCH (2023)

Article Materials Science, Multidisciplinary

Intrinsic Mechanisms of Morphological Engineering and Carbon Doping for Improved Photocatalysis of 2D/2D Carbon Nitride Van Der Waals Heterojunction

Jinqiang Zhang, Xiaoli Zhao, Lin Chen, Shuli Li, Haijun Chen, Yuezhao Zhu, Shuaijun Wang, Yang Liu, Huayang Zhang, Xiaoguang Duan, Mingbo Wu, Shaobin Wang, Hongqi Sun

Summary: A 2D/2D van der Waals heterojunction of carbon-rich carbon nitride was successfully fabricated using a top-down strategy, resulting in improved photocatalytic performance for the water splitting reaction. The created semiconducting channel in the heterojunction exhibited enhanced electric field exposure and radiation absorption, leading to better charge carrier separation and mobility. Finite element method analysis confirmed the contribution of the heterojunction formation to the enhanced photocatalysis.

ENERGY & ENVIRONMENTAL MATERIALS (2023)

Article Engineering, Environmental

Graphitic carbon nitride engineered ?-Fe2O3/rGO heterostructure for visible-light-driven photochemical oxidation of sulfamethoxazole br

Abdul Hannan Asif, Nasir Rafique, Rajan Arjan Kalyan Hirani, Lei Shi, Shu Zhang, Shaobin Wang, Hongqi Sun

Summary: Rational design of graphitic carbon nitride (g-C3N4) engineered hematite (Fe2O3)/reduced graphene oxide (rGO) photocatalysts has been successfully employed for visible-light-driven photo-Fenton-like degradation of sulfamethoxazole (SMX). The optimal photocatalyst showed exceptional performance due to the successful integration of g-C3N4/Fe2O3/rGO, enabling efficient separation and migration of photoinduced charge carriers (e/h+). The study also optimized the photochemical decomposition efficiency by analyzing important reaction parameters such as catalyst loading, H2O2 dosage, pH, and temperature, and proposed a possible mechanism for SMX degradation based on the generation of reactive species and degradation intermediates.

CHEMICAL ENGINEERING JOURNAL (2023)

Review Materials Science, Multidisciplinary

Microplastic materials in the environment: Problem and strategical solutions

Wenjie Tian, Pingan Song, Huayang Zhang, Xiaoguang Duan, Yen Wei, Hao Wang, Shaobin Wang

Summary: This article comprehensively identifies and analyzes the distribution, sources, transport, fate, and potential risks of microplastics in water, air, and soil. Integrated strategies are proposed to mitigate the impact of microplastics on the environment, and critical reviews of degradation and conversion technologies are also provided.

PROGRESS IN MATERIALS SCIENCE (2023)

Article Chemistry, Multidisciplinary

Confined Tri-Functional FeOx@MnO2@SiO2 Flask Micromotors for Long-Lasting Motion and Catalytic Reactions

Yangyang Yang, Lei Shi, Jingkai Lin, Panpan Zhang, Kunsheng Hu, Shuang Meng, Peng Zhou, Xiaoguang Duan, Hongqi Sun, Shaobin Wang

Summary: In this study, a magnetic FeOx@MnO2@SiO2 micromotor with multiple functions was designed, which demonstrated its catalytic performance in the activation of H2O2/peroxymonosulfate (PMS) for sustained motion and organic degradation. The correlations between catalytic efficiency and motion behavior/mechanism were also revealed.
Article Engineering, Environmental

Conversion and impact of dissolved organic matters in a heterogeneous catalytic peroxymonosulfate system for pollutant degradation

Yanshan Wang, Ning Li, Qinglong Fu, Zhanjun Cheng, Yingjin Song, Beibei Yan, Guanyi Chen, Li'an Hou, Shaobin Wang

Summary: This study comprehensively analyzed the molecular transformation behavior of dissolved organic matters (DOM) during peroxymonosulfate (PMS) activation by biochar for organic degradation. Different types of reactions were observed, including oxidative decarbonization, dehydrogenation, dehydration, deheteroatomisation, hydration, and N/S oxidation reactions. Certain compounds present in DOM showed moderate or strong inhibition effects on contaminant degradation. This information can be used to regulate ROS composition and DOM conversion process in PMS systems and minimize the interference of DOM conversion intermediates on PMS activation and degradation of target pollutants.

WATER RESEARCH (2023)

Article Chemistry, Physical

Insights into O2 Activation via MnIIIOOH Species on Mn-Rich Biochar

Yanfen Fang, Dengyu Ying, Huibin Niu, Yan Xu, Shaobin Wang, Ran Duan, Huaiyong Zhu, Chaoyuan Deng, Chuncheng Chen, Yingping Huang

Summary: This study enhanced the manganese content of low-temperature manganese-rich biochar (Mn-BC) and clarified the activation mechanism of molecular oxygen (O-2) by Mn-BC. The Mn-III on MnBC-H5 activated O-2 under visible light, leading to effective organic degradation. This study provides a theoretical basis for developing environmentally friendly biochar-based catalysts and studying the environmental effects of biochar.

ACS CATALYSIS (2023)

Article Chemistry, Physical

Macroporous Carbon-Nitride-Supported Transition-Metal Single-Atom Catalysts for Photocatalytic Hydrogen Production from Ammonia Splitting

Jingkai Lin, Yantao Wang, Wenjie Tian, Huayang Zhang, Hongqi Sun, Shaobin Wang

Summary: A series of macroporous carbon nitride-supported single-atom transition metal catalysts have been developed for solar light-driven photocatalytic gaseous NH3 splitting. The optimized Ni-MCN catalyst shows a high H-2 production rate due to the presence of Ni-N-4 sites, which improve the optical properties, accelerate charge carrier separation/transfer, and boost NH3 splitting kinetics. These findings provide valuable guidelines for the rational design of single-atom catalysts for energy- and cost-effective photocatalytic NH3 splitting.

ACS CATALYSIS (2023)

Article Engineering, Environmental

Electro-Fenton-Based Membrane System for Organic Micropollutant Removal: New Trend and Prospect

Shuang Zhong, Zhong-Shuai Zhu, Xiaoguang Duan, Shaobin Wang

Summary: Electro-Fenton-based membrane (EFM) technologies show promise in removing micropollutants from wastewater due to their ability to minimize chemical input, generate reactive oxygen species (ROS) efficiently, and enhance mass transfer. However, the mechanism and synergies between electro-Fenton reactions and membrane confinement are still unclear. This Perspective provides a comprehensive overview of membrane compositions, reaction pathways, and advances in EFM systems, and proposes promising hybrid systems for maximizing purification efficiency.

ACS ES&T ENGINEERING (2023)

Article Environmental Sciences

Interfacial Electric Field Tuning Carbon-Catalyzed Persulfate Activation toward a Maneuverable Oxidation Pathway for Enhanced Removal of Bisphenol A

Chunyang Nie, Zhenhua Dai, Lijia Wan, Binghua Jing, Xiaoguang Duan, Shaobin Wang, Bo Lai, Zhimin Ao

Summary: Carbocatalyst/persulfate is a green, highly oxidative system for decontaminating refractory aqueous organic pollutants. The interfacial electric field (IEF) is used to alter the catalytic activity and selectivity of carbon/persulfate systems via the field-dipole effect. Positive IEF induces/reinforces the nonradical oxidation pathway, while different persulfate activation pathways can be induced under negative IEF. This work extends the application of the interfacial electric field in persulfate-based advanced oxidation processes.

ACS ES&T WATER (2023)

Article Chemistry, Physical

The structure-dependent mechanism of single-atom cobalt on macroporous carbon nitride in (photo-)Fenton-like reactions

Jingkai Lin, Lin Jiang, Wenjie Tian, Yangyang Yang, Xiaoguang Duan, Yan Jiao, Huayang Zhang, Shaobin Wang

Summary: The relationship between the single-atom structure and catalytic activity in Fenton-like catalysis was investigated. Different molecular structures and a light-dependent mechanism were discovered. The Co-N1+3 configuration favored the formation and had higher catalytic activity, while the Co-N2+2 configuration had inferior catalytic activity and negative effects on the adjacent Co-N1+3 site. Additionally, a 100% nonradical reaction pathway that could be photo-switched to a nonradical/radical process by visible light was revealed. This work enriches the fundamentals of single-atom catalysis and provides new insights into the atomic metal structure, reaction pathways and mechanisms, and structure-activity relationships in organic degradation.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Review Engineering, Environmental

Polyaniline-based adsorbents for water treatment: Roles of low-cost materials and 2D materials

Akbar Samadi, Zhuan Wang, Shaobin Wang, S. K. Nataraj, Lingxue Kong, Shuaifei Zhao

Summary: This review critically assesses PANI-based adsorbents in terms of their advantages, disadvantages, and separation mechanisms in pollutant removal. It highlights the significant roles of low-cost materials as well as emerging 2D nanosheets in enhancing the performance of PANI-based adsorbents.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Chemical

Maximizing charge dynamics in ZnIn2S4/CN Van der Waals heterojunction for optimal hydrogen production from photoreforming of glucose

Jinqiang Zhang, Xinyuan Xu, Lei Shi, Huayang Zhang, Shaobin Wang, Hongqi Sun

Summary: Biomass photoreforming is a promising avenue for green hydrogen production. By loading 2D ZnIn2S4 onto 2D carbon nitride nanosheets, Van der Waals heterojunctions are formed, resulting in optimal charge dynamics and intensified H2 generation.

CHEMICAL ENGINEERING SCIENCE (2024)

Review Chemistry, Physical

Photothermal catalytic C1 conversion on supported catalysts

Hui Liu, Liangliang Han, Xiaoguang Duan, Hongqi Sun, Shaobin Wang, Jinqiang Zhang

Summary: Photothermal catalysis is a promising method for converting C1 feedstocks into valuable chemicals. This comprehensive review highlights the mechanism, design strategies for catalysts, and recent progress in photothermal catalytic C1 conversion.

ENERGY ADVANCES (2023)

Article Chemistry, Physical

Li intercalation in an MoSe2 electrocatalyst: In situ observation and modulation of its precisely controllable phase engineering for a high-performance flexible Li-S battery

Yunke Wang, Yige Zhao, Kangli Liu, Shaobin Wang, Neng Li, Guosheng Shao, Feng Wang, Peng Zhang

Summary: This study achieved a precisely controllable phase evolution from 2H-MoSe2 to 1T-MoSe2 in MoSe2 through in situ Li ions intercalation. The definite functional relationship between cut-off voltage and phase structure was identified for phase engineering. The prepared sulfur host (CNFs/1T-MoSe2) exhibited high charge density, strong polysulfides adsorption, and catalytic kinetics. Li-S cells based on this sulfur host showed good cyclic stability and high specific capacity.

CARBON ENERGY (2023)

Article Engineering, Environmental

A metal-phenolic network-assembled nanotrigger evokes lethal ferroptosis via self-supply loop-based cytotoxic reactions

Xinping Zhang, Yuxin Guo, Xiaoyang Liu, Shun-Yu Wu, Ya-Xuan Zhu, Shao-Zhe Wang, Qiu-Yi Duan, Ke-Fei Xu, Zi-Heng Li, Xiao-Yu Zhu, Guang-Yu Pan, Fu-Gen Wu

Summary: This study develops a nanotrigger HCFT for simultaneous photodynamic therapy and light-triggered ferroptosis therapy. The nanotrigger can relieve tumor hypoxia, induce enhanced photodynamic reaction, and facilitate the continuation of Fenton reaction, ultimately leading to lethal ferroptosis in tumor cells.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

XAS and DFT investigation of atomically dispersed Cu/Co alloyed Pt local structures under selective hydrogenation of acetylene to ethylene

Olumide Bolarinwa Ayodele, Toyin Daniel Shittu, Olayinka S. Togunwa, Dan Yu, Zhen-Yu Tian

Summary: This study focused on the semihydrogenation of acetylene in an ethylene-rich stream using two alloyed Pt catalysts PtCu and PtCo. The PtCu catalyst showed higher activity and ethylene yield compared to PtCo due to its higher unoccupied Pt d-orbital density. This indicates that alloying Pt with Cu is more promising for industrial relevant SHA catalyst.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A multifunctional emitter with synergistical adjustment of rigidity and flexibility for high-performance data-recording and organic light-emitting devices with hot exciton channel

Guowei Chen, Wen-Cheng Chen, Yaozu Su, Ruicheng Wang, Jia-Ming Jin, Hui Liang, Bingxue Tan, Dehua Hu, Shaomin Ji, Hao-Li Zhang, Yanping Huo, Yuguang Ma

Summary: This study proposes an intramolecular dual-locking design for organic luminescent materials, achieving high luminescence efficiency and performance for deep-blue organic light-emitting diodes. The material also exhibits unique mechanochromic luminescence behavior and strong fatigue resistance.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Cobalt/nickel purification by solvent extraction with ionic liquids in millifluidic reactors: From single-channel to numbered-up configuration with solvent recycle

Joren van Stee, Gregory Hermans, Jinu Joseph John, Koen Binnemans, Tom Van Gerven

Summary: This work presents a continuous solvent extraction method for the separation of cobalt and nickel in a millifluidic system using Cyphos IL 101 (C101) as the extractant. The optimal conditions for extraction performance and solvent properties were determined by investigating the effects of channel length, flow rate, and temperature. The performance of a developed manifold structure was compared to a single-channel system, and excellent separation results were achieved. The continuous separation process using the manifold structure resulted in high purity cobalt and nickel products.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Environment-triggered nanoagent with programmed gas release performance for accelerating diabetic infected wound healing

Yan Xu, Jingai Jiang, Xinyi Lv, Hui Li, Dongliang Yang, Wenjun Wang, Yanling Hu, Longcai Liu, Xiaochen Dong, Yu Cai

Summary: A programmed gas release nanoparticle was developed to address the challenges in treating diabetic infected wounds. It effectively removes drug-resistant pathogens and remodels the wound microenvironment using NO and H2S. The nanoparticle can eliminate bacteria and promote wound healing through antibacterial and anti-inflammatory effects.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Synergistic dopa-reinforced fluid hydrosol as highly efficient coal dust suppressant

Tong Xia, Zhilin Xi, Lianquan Suo, Chen Wang

Summary: This study investigated a highly efficient coal dust suppressant with low initial viscosity and high adhesion-solidification properties. The results demonstrated that the dust suppressant formed a network of multiple hydrogen bonding cross-linking and achieved effective adhesion and solidification of coal dust through various chemical reactions.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

First principle-based rate equation theory for the carbonation kinetics of CaO with CO2 in calcium looping

Jinzhi Cai, Zhenshan Li

Summary: A density functional theory-based rate equation was developed to predict the gas-solid reaction kinetics of CaO carbonation with CO2 in calcium looping. The negative activation energy of CaO carbonation close to equilibrium was accurately predicted through experimental validation.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

Jianxiong Chen, Fuhao Ren, Ningning Yin, Jie Mao

Summary: This study presents an economically efficient and easily implementable surface modification approach to enhance the high-temperature electrical insulation and energy storage performance of polymer dielectrics. The self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Medium entropy metal oxide induced *OH species targeted transfer strategy for efficient polyethylene terephthalate plastic recycling

Zijian Li, Zhaohui Yang, Shao Wang, Hongxia Luo, Zhimin Xue, Zhenghui Liu, Tiancheng Mu

Summary: This study reports a strategy for upgrading polyester plastics into value-added chemicals using electrocatalytic methods. By inducing the targeted transfer of *OH species, polyethylene terephthalate was successfully upgraded into potassium diformate with high purity. This work not only develops an excellent electrocatalyst, but also provides guidance for the design of medium entropy metal oxides.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A novel environmental friendly and sustainable process for textile dyeing with sulphur dyes for cleaner production

Navneet Singh Shekhawat, Surendra Kumar Patra, Ashok Kumar Patra, Bamaprasad Bag

Summary: This study primarily focuses on developing a sulphur dyeing process at room temperature using bacterial Lysate, which is environmentally friendly, energy and cost effective, and sustainable. The process shows promising improvements in dye uptake and fastness properties.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Highly efficient and sustainable cationic polyvinyl chloride nanofibrous membranes for removal of E. coli and Cr (VI): Filtration and adsorption

Dengjia Shen, Hongyang Ma, Madani Khan, Benjamin S. Hsiao

Summary: This study developed cationic PVC nanofibrous membranes with high filtration and adsorption capability for the removal of bacteria and hexavalent chromium ions from wastewater. The membranes demonstrated remarkable performance in terms of filtration efficiency and maximum adsorption capacity. Additionally, modified nanofibrous membranes were produced using recycled materials and showed excellent retention rates in dynamic adsorption processes.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Concerted proton-coupled electron transfer promotes NiCoP nanowire arrays for efficient overall water splitting at industrial-level current density

Xiaoyan Wang, Zhikun Wang, Ben Jia, Chunling Li, Shuangqing Sun, Songqing Hu

Summary: Inspired by photosystem II, self-supported Fe-doped NiCoP nanowire arrays modified with carboxylate were constructed to boost industrial-level overall water splitting by employing the concerted proton-coupled electron transfer mechanism. The introduction of Fe and carboxyl ligand led to improved catalytic activity for HER and OER, and NCFCP@NF exhibited long-term durability for overall water splitting.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Self-limiting growth of thin dense LTA membranes boosts H2 gas separation performance

Pengyao Yu, Ge Yang, Yongming Chai, Lubomira Tosheva, Chunzheng Wang, Heqing Jiang, Chenguang Liu, Hailing Guo

Summary: Thin LTA zeolite membranes were prepared through secondary growth of nano LTA seeds in a highly reactive gel, resulting in membranes with superior permeability and selectivity in gas separation applications.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Prediction of phosphate adsorption amount, capacity and kinetics via machine learning: A generally physical-based process and proposed strategy of using descriptive text messages to enrich datasets

Baiqin Zhou, Huiping Li, Ziyu Wang, Hui Huang, Yujun Wang, Ruichun Yang, Ranran Huo, Xiaoyan Xu, Ting Zhou, Xiaochen Dong

Summary: The use of machine learning to predict the performance of specific adsorbents in phosphate adsorption shows great promise in saving time and revealing underlying mechanisms. However, the small size of the dataset and insufficient detailed information limits the model training process and the accuracy of results. To address this, the study employs a fuzzing strategy that replaces detailed numeric information with descriptive text messages on the physiochemical properties of adsorbents. This strategy allows the recovery of discarded samples with limited information, leading to accurate prediction of adsorption amount, capacity, and kinetics. The study also finds that phosphate uptake by adsorbents is generally through physisorption, with some involvement of chemisorption. The framework established in this study provides a practical approach for quickly predicting phosphate adsorption performance in urgent scenarios, using easily accessible information.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Absorption of hydrophobic volatile organic compounds in renewable vegetable oils and esterified fatty acids: Determination of gas-liquid partitioning coefficients as a function of temperature

Paula Alejandra Lamprea Pineda, Joren Bruneel, Kristof Demeestere, Lisa Deraedt, Tex Goetschalckx, Herman Van Langenhove, Christophe Walgraeve

Summary: This study evaluates the use of four esterified fatty acids and three vegetable oils as absorption liquids for hydrophobic VOCs. The experimental results show that isopropyl myristate is the most efficient liquid for absorbing the target VOCs.

CHEMICAL ENGINEERING JOURNAL (2024)