4.6 Article

EMG-driven hand model based on the classification of individual finger movements

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.bspc.2019.101834

关键词

Electromyography; Signal processing algorithms; Machine learning; Hand model; Inverse and forward dynamics

资金

  1. Pontificia Universidad Javeriana in Bogota, Colombia [7167, 20128]

向作者/读者索取更多资源

The recovery of hand motion is one of the most challenging aspects in stroke rehabilitation. This paper presents an initial approach to robot-assisted hand-motion therapies. Our goal was twofold: firstly, we have applied machine learning methods to identify and characterize finger motion patterns from healthy individuals. To this purpose, Electromyographic (EMG) signals have been acquired from flexor and extensor muscles in the forearm using surface electrodes. Time and frequency features were used as inputs to machine learning algorithms for recognition of six hand gestures. In particular, we compared the performance of Artificial Neural Networks (ANN), Support Vector Machines (SVM) and k-Nearest Neighbor (k-NN) algorithms for classification. Secondly, each identified gesture was turned into a joint reference trajectory by applying interpolation methods. This allowed us to reconstruct the hand/finger motion kinematics and to simulate the dynamics of each motion pattern. Experiments were carried out to create an EMG database from 20 control subjects, and a VICON camera tracking system was used to validate the accuracy of the proposed system. The average correlation between the EMG-based generated joint trajectories and the tracked hand-motion was 0.91. Furthermore, statistical analysis applied to 14 different SVM, ANN and k-NN configurations showed that Fine k-NN and Weighted k-NN have a better performance for the classification of gestures (98% of accuracy). In a future, the trajectories controlled by EMG signals could be applied to an exoskeleton or hand-robotic prosthesis for rehabilitation. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据