4.6 Article

Chicken Intestinal Mycobiome: Initial Characterization and Its Response to Bacitracin Methylene Disalicylate

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00304-20

关键词

mycobiome; bacitracin methylene disalicylate; chickens; microbiome; microbiota; mycobiota; poultry

资金

  1. USDA National Institute of Food and Agriculture [2018-68003-27462]
  2. Ralph F. and Leila W. Boulware Endowment Fund
  3. Oklahoma Agricultural Experiment Station Project [H-3025]
  4. USDA-National Institute of Food and Agriculture (NIFA) [2018-67011-28041]
  5. Wentz undergraduate research scholarship at Oklahoma State University

向作者/读者索取更多资源

The gastrointestinal (GI) tract harbors a diverse population of microorganisms. While much work has been focused on the characterization of the bacterial community, very little is known about the fungal community, or mycobiota, in different animal species and chickens in particular. Here, we characterized the biogeography of the mycobiota along the GI tract of day 28 broiler chicks and further examined its possible shift in response to bacitracin methylene disalicylate (BMD), a commonly used in-feed antibiotic, through Illumina sequencing of the internal transcribed spacer 2 (ITS2) region of fungal rRNA genes. Out of 124 samples sequenced, we identified a total of 468 unique fungal features that belong to four phyla and 125 genera in the GI tract. Ascomycota and Basidiomycota represented 90% to 99% of the intestinal mycobiota, with three genera, i.e., Microascus, Trichosporon, and Aspergillus, accounting for over 80% of the total fungal population in most GI segments. Furthermore, these fungal genera were dominated by Scopulariopsis brevicauIis (Scopulariopsis is the anamorph form of Microascus), Trichosporon asahii, and two Aspergillus species. We also revealed that the mycobiota are more diverse in the upper than lower GI tract. The cecal mycobiota transitioned from being S. brevicaulis dominant on day 14 to T. asahll dominant on day 28. Furthermore, 2-week feeding of 55 mg/kg BMD tended to reduce the cecal mycobiota alpha-diversity. Taken together, we provided a comprehensive biogeographic view and succession pattern of the chicken intestinal mycobiota and its influence by BMD. A better understanding of intestinal mycobiota may lead to the development of novel strategies to improve animal health and productivity. IMPORTANCE The intestinal microbiota is critical to host physiology, metabolism, and health. However, the fungal community has been often overlooked. Recent studies in humans have highlighted the importance of the mycobiota in obesity and disease, making it imperative that we increase our understanding of the fungal community. The significance of this study is that we revealed the spatial and temporal changes of the mycobiota in the GI tract of the chicken, a nonmammalian species. To our surprise, the chicken intestinal mycobiota is dominated by a limited number of fungal species, in contrast to the presence of hundreds of bacterial taxa in the bacteriome. Additionally, the chicken intestinal fungal community is more diverse in the upper than the lower GI tract, while the bacterial community shows an opposite pattern. Collectively, this study lays an important foundation for future work on the chicken intestinal mycobiome and its possible manipulation to enhance animal performance and disease resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据