4.8 Article

Ultrafast Exfoliation of 2D Materials by Solvent Activation and One-Step Fabrication of All-2D-Material Photodetectors by Electrohydrodynamic Printing

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 25, 页码 28840-28851

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c06279

关键词

2D materials; exfoliation; solvent; electrohydrodynamic printing; photodetector

资金

  1. Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 [R-284-000-161-114]

向作者/读者索取更多资源

Large-scale liquid exfoliation of two-dimensional materials such as molybdenum disulfide, tungsten disulfide, and graphene for the synthesis of printable inks is still inefficient due to many hours of exfoliation time needed to achieve a highly concentrated dispersion that is useful for printing. Here, we report that soaking the bulk 2D material powders in a variety of solvents (water, ethanol, isopropanol, acetone, methanol, dimethylformamide, N-methyl pyrrolidone, and hexane) briefly as short as 5 min activates them to be much more easily exfoliated afterward. The unsoaked powder yielded a negligible concentration of dispersed nanosheets (less than 0.01 mg/mL) even after long hours of sonication, while the powders soaked in water resulted in dispersed nanosheets of 1.21 mg/mL for MoS2 and 1.28 mg/mL for WS2 after 6 and 4 h of sonication, respectively, a more than 100 time increase. For graphene, soaking in methanol for 5 min prior to sonication for 6 h yielded an increase in the dispersed nanosheet concentration to 0.13 mg/mL, a more than 10 time increase in concentration. The enhanced exfoliation is originated not from the intercalated solvent molecules but from the slightly increased d-spacing of the bulk powders during soaking due to the different dielectric environments in the solvents, which assists in the exfoliation afterward. We further fabricated MoS2 and WS2 photodetectors with graphene as electrodes by onestep electrohydrodynamic (EHD) printing using highly concentrated inks (>2 mg/mL) obtained by ultrafast liquid exfoliation, which have light sensitivity down to 0.05 sun. We believe that this ultrafast exfoliation technique combined with the one-step device printing technique enables a big step toward the mass production of functional devices fabricated from solution-processed 2D material inks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据