4.6 Article

Novel MoS2-DOPO Hybrid for Effective Enhancements on Flame Retardancy and Smoke Suppression of Flexible Polyurethane Foams

期刊

ACS OMEGA
卷 5, 期 6, 页码 2734-2746

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b03346

关键词

-

资金

  1. National Key R&D Program of China [2018YFC0809506]
  2. National Natural Science Foundation of China [U1633203]
  3. Sichuan Science and Technology Program [2018GZYZF0069]
  4. General Program of Civil Aviation Flight University of China [J2018-07]

向作者/读者索取更多资源

A novel MoS2-DOPO hybrid has been successfully synthesized through the grafting of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) on the surface of MoS2 nanosheets using allyl mercaptan as an intermediate. MoS2 DOPO was used as a flame retardant additive to prepare flame-retardant flexible polyurethane foam (FPUF). The influence of MoS2-DOPO on the mechanical, thermal stability, and flame retardancy properties of FPUF composites were systematically investigated. The incorporation of MoS2-DOPO could not deteriorate greatly the tensile strength and 50% compression set of FPUF composites, but effectively improves the char residue. The cone calorimeter and smoke density tests results revealed that the peak heat release rate, total heat release, and the maximum smoke density of the MoS2-DOPO/FPUF composite were reduced by 41.3, 27.7, and 40.5%, respectively, compared with those of pure FPUF. Furthermore, the char residue after cone calorimeter tests and pyrolysis gaseous products of the MoS2-DOPO/FPUF composite were analyzed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and thermogravimetric analysis/infrared spectrometry. The results suggested that the MoS2-DOPO hybrid played a synergistic flame retardant effect of gas and condensed bi-phase action. In addition, a possible flame retardancy and smoke suppression mechanism of the MoS2-DOPO/FPUF composite were proposed. This study provides a facile and promising strategy for the fabrication of polymer materials with excellent flame retardancy and smoke suppression properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据