4.6 Article

Transmembrane TNFα-Expressed Macrophage Membrane-Coated Chitosan Nanoparticles as Cancer Therapeutics

期刊

ACS OMEGA
卷 5, 期 3, 页码 1572-1580

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b03531

关键词

-

资金

  1. Department of Biotechnology, Government of India [BT/PR13560/COE/34/44/2015, BT/PR25095/NER/95/1011/2017]

向作者/读者索取更多资源

Transmembrane TNF alpha, a crucial signaling cytokine, holds anticell proliferative potential. Successful delivery of this intact transmembrane protein to the target site is quite intriguing. Amidst numerous nanocarriers, a novel class of new generation macrophage membrane-coated nanocarriers is endowed with innate tumor homing abilities and inherent capacity of escaping body's defense machinery. In this perspective, a novel therapeutic module has been fabricated by coating a nontoxic, biodegradable chitosan nanoparticle core with engineered macrophage membrane-tethered TNF alpha. Herein, the expression of membrane-bound TNF alpha was induced by challenging phorbol 12-myristate 13-acetate-differentiated THP-1 cells with bacterial lipopolysaccharide. Subsequently, the as-synthesized chitosan nanoparticle core was coated with a TNF alpha-expressed macrophage membrane through an extrusion process. While transmission electron microscopy imaging, sodium dodecyl sulphate polyacrylamide gel electrophoresis, and western blotting results demonstrated successful coating of the chitosan nanoparticles with the TNF alpha-induced membrane, the cell viability assays on several cancer cells such as-HeLa, MDA-MB-231, and MCF-7 revealed significant innate anticell proliferative potential of these membrane-coated nanoparticles. Additionally, evaluation of expression of several interleukins after treatment demonstrated excellent biocompatibility of the membrane-coated nanoparticles. The fabricated nanoparticles also demonstrated a dose-dependent cell death in tumor spheroids, which was further corroborated with calcein AM/propidium iodide dual staining results. Translation of the therapeutic efficacy of the synthesized nanoparticles from monolayers to tumor spheroids augments its potential in cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据