4.7 Article

Topological phases of a dimerized Fermi-Hubbard model for semiconductor nano-lattices

期刊

NPJ QUANTUM INFORMATION
卷 6, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41534-020-0253-9

关键词

-

资金

  1. UK Engineering and Physical Sciences Research Council [EP/M009564/1]
  2. EPSRC strategic equipment grant [EP/L02263X/1]
  3. EPSRC [EP/M009564/1, EP/L02263X/1] Funding Source: UKRI

向作者/读者索取更多资源

Motivated by recent advances in fabricating artificial lattices in semiconductors and their promise for quantum simulation of topological materials, we study the one-dimensional dimerized Fermi-Hubbard model. We show how the topological phases at half-filling can be characterized by a reduced Zak phase defined based on the reduced density matrix of each spin subsystem. Signatures of bulk-boundary correspondence are observed in the triplon excitation of the bulk and the edge states of uncoupled spins at the boundaries. At quarter-filling, we show that owing to the presence of the Hubbard interaction the system can undergo a transition to the topological ground state of the non-interacting Su-Schrieffer-Heeger model with the application of a moderate-strength external magnetic field. We propose a robust experimental realization with a chain of dopant atoms in silicon or gate-defined quantum dots in GaAs where the transition can be probed by measuring the tunneling current through the many-body state of the chain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据