4.5 Article

Rapid High-Fidelity Spin-State Readout in Si/Si-Ge Quantum Dots via rf Reflectometry

期刊

PHYSICAL REVIEW APPLIED
卷 13, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.13.024019

关键词

-

资金

  1. Army Research Office
  2. ARO
  3. LPS through the QuaCGR Fellowship Program
  4. [W911NF-16-1-0260]
  5. [W911NF-19-1-0167]

向作者/读者索取更多资源

Silicon spin qubits show great promise as a scalable qubit platform for fault-tolerant quantum computing. However, fast high-fidelity readout of charge and spin states, which is required for quantum error correction, has remained elusive. Radio-frequency reflectometry enables rapid high-fidelity readout of GaAs spin qubits, but the large capacitances between accumulation gates and the underlying two-dimensional electron gas in accumulation-mode Si quantum-dot devices, as well as the relatively low two-dimensional electron gas mobilities, have made radio-frequency reflectometry challenging in these platforms. In this work, we implement radio-frequency reflectometry in a Si/Si-Ge quantum-dot device with overlapping gates by making minor device-level changes that eliminate these challenges. We demonstrate charge-state readout with a fidelity above 99.9% in an integration time of 300 ns. We measure the singlet and triplet states of a double quantum dot via both conventional Pauli spin blockade and a charge latching mechanism, and we achieve maximum fidelities of 82.9 and 99.0% in 2.08- and 1.6-mu s integration times, respectively. We also use radio-frequency reflectometry to perform single-shot readout of single-spin states via spin-selective tunneling in microsecond-scale integration times.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据